886 resultados para absorbable, ligament(s), polymer, fiber, fatigue


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We comment on the recent Letter by Argyros et al. [Opt. Lett. 29, 1882 (2004)] in which a microstructured polymer fiber doped with the dye Rhodamine 6G was discussed as a possible fiber laser source. We suggest that the lasing action at 632 nm was due to stimulated Raman scattering in the poly(methyl methacrylate) host material. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on an optical bend sensor based on a Bragg grating inscribed in an eccentric core polymer optical fiber. The device exhibits the strong fiber orientation dependence, the wide bend curvature range of ± 22.7 m-1 and high bend sensitivity of 63 pm/m-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally characterized a birefringent microstructured polymer fiber of specific construction, which allows for single mode propagation in two cores separated by a pair of large holes. The fiber exhibits high birefringence in each of the cores as well as relatively weak coupling between the cores. Spectral dependence of the group and the phase modal birefringence was measured using an interferometric method. We have also measured the sensing characteristics of the fiber such as polarimetric sensitivity to hydrostatic pressure, strain and temperature. Moreover, we have studied the effect of hydrostatic pressure and strain on coupling between the cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we experimentally investigate the response time of humidity sensors based on polymer optical fiber Bragg gratings. By the use of etching with acetone we can control the poly (methyl methacrylate) based fiber in order to reduce the diffusion time of water into the polymer and hence speed up the relative wavelength change caused by humidity variations. A much improved response time of 12 minutes for humidity decrease and 7 minutes for humidity increase, has been achieved by using a polymer optical fiber Bragg grating with a reduced diameter of 135 microns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarise the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber Bragg grating sensors recorded in poly(methyl methacrylate) fiber often exhibit hysteresis in the response of Bragg wavelength to strain, particularly when exposed to high levels of strain. We show that, when such a fiber grating sensor is bonded directly to a substrate, the hysteresis is reduced by more than 12 times, compared to the case where the sensor is suspended freely between two supports. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarize the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, low cost and fast response time intrinsic relative humidity sensor system based on an etched singlemode polymer fiber Bragg (POFBG) is presented in this paper. A macro-bend linear edge filter which converts the humidity induced wavelength shift into an intensity change is used as the interrogation technique. The singlemode POFBG is etched to micro-meters in diameter to improve the response time of the humidity sensor. A response time of 4.5 s is observed for a polymer FBG with a cladding diameter of 25 μm. The overall sensor system sensitivity was 0.23 mV/%RH. The etched POFBG humidity sensor shows anexponential decrease in response time with a decrease in fiber diameter. The developed sensor might have potential applications in a wide range of applications where fast and accurate real time humidity control is required. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and highly sensitive liquid level sensor based on a polymer optical fiber Bragg grating (POFBG) is experimentally demonstrated. Two different configurations are studied and both configurations show the potential to interrogate liquid level by measuring the strain induced in a POFBG embedded in a silicone rubber diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range and a good repeatability. For comparison, a similar sensor using a FBG inscribed in silica fiber is fabricated, which displays a sensitivity that is a factor of 5 smaller than the POFBG. The temperature sensitivity is studied and a novel multi-sensor arrangement proposed which has the potential to provide level readings independent of temperature and the liquid density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.