873 resultados para abnormalities, developmental
Resumo:
Background: Zimmermann-Laband syndrome is a rare autosomal dominant disorder that is characterized by gingival fibromatosis, ear, nose, bone, and nail defects, and hepatosplenomegaly.Methods: This case report describes the clinical presentation and periodontal findings in a 13-year-old female patient with previously undiagnosed Zimmermann-Laband syndrome.Results: Clinical and radiographic findings and genetic counseling confirmed the diagnosis of Zimmermann-Laband syndrome. The most striking oral findings were the presence of gingival enlargement involving both the maxillary and mandibular arches, anterior open bite, non-erupted teeth, and two supernumerary teeth. Periodontal treatment consisted of gingivectomy in four quadrants. Histopathologic evaluation of excised tissue supported the diagnosis of gingival fibromatosis. The patient was referred for appropriate orthodontic treatment and genetic counseling, and has been closely followed for the earliest signs of hepatosplenomegaly.Conclusions: Dental practitioners should be alert for developmental abnormalities that may occur in patients with gingival fibromatosis as this may indicate the presence of a rare disorder like Zimmermann-Laband syndrome. A comprehensive medical history and physical systemic evaluation are essential for correct diagnosis and treatment of these cases.
Resumo:
To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain.
Resumo:
A number of aberrant morphological phenotypes were noted during propagation of the Arabidopsis thaliana DNA hypomethylation mutant, ddm1, by repeated self-pollination. Onset of a spectrum of morphological abnormalities, including defects in leaf structure, flowering time, and flower structure, was strictly associated with the ddm1 mutations. The morphological phenotypes arose at a high frequency in selfed ddm1 mutant lines and some phenotypes became progressively more severe in advancing generations. The transmission of two common morphological trait syndromes in genetic crosses demonstrated that the phenotypes are caused by heritable lesions that develop in ddm1 mutant backgrounds. Loss of cytosine methylation in specific genomic sequences during the selfing regime was noted in the ddm1 mutants. Potential mechanisms for formation of the lesions underlying the morphological abnormalities are discussed.
Resumo:
Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.
Resumo:
Professionals working in disability services often encounter clients who have chromosome disorders such as Williams, Angelman or Down syndromes. As chromosome testing becomes increasingly sophisticated, however, more people are being diagnosed with very rare chromosome disorders that are identified not by a syndrome name, but rather by a description of the number, size and shape of their chromosomes (called the karyotype) or by a report of chromosome losses and gains detected through an advanced process known as microarray-based comparative genomic hybridisation (array CGH). For practitioners who work with individuals with rare chromosome disorders and their families, a basic level of knowledge about the evolving field of genetics, as well as specific knowledge about chromosome abnormalities, is essential since they must be able to demonstrate their knowledge and skills to clients (Simic & Turk, 2004). In addition, knowledge about the developmental consequences of various rare chromosome disorders is important for guiding prognoses, expectations, decisions and interventions. The current article provides information that aims to help practitioners work more effectively with this population. It begins by presenting essential information about chromosomes and their numerical and structural abnormalities and then considers the developmental consequences of rare chromosome disorders through a critical review of relevant literature.
Resumo:
Extensive and indiscriminate use of synthetic compounds and natural compounds obtained from plant sources have resulted in serious threats to the aquatic ecosystem and human health. Aqueous extract of the root of the plant, Milletia pachycarpa Benth, is currently used for killing fish in the state of Manipur, India. Moreover, this plant is also used as traditional medicine in this region. Although it is widely used in traditional medicine, there is limited information available regarding the adverse effects and mechanism underlying its toxicity. This study examined the effects of exposure to aqueous extract of M. pachycarpa (AEMP) on early embryonic development of zebrafish embryos and mechanisms underlying toxicity. Zebrafish embryos treated with different concentrations of the AEMP produced embryonic lethality and developmental defects. The 96-hr-LC50 of AEMP was found to be 4.276 mu g/mL. Further, multiple developmental abnormalities such as pericardial edema, yolk sac edema, spinal curvature, swim bladder deflation, decreased heart rate, and delayed hatching were also observed in a dose-dependent manner. Zebrafish embryo showing moderate-to-severe developmental defects following AEMP exposure cannot swim properly. Further, this study examined oxidative stress and apoptosis in embryos exposed to AEMP. Enhanced production of ROS and apoptosis was found in brain, trunk, and tail of zebrafish embryos treated with AEMP. Data suggest that oxidative stress and apoptosis are associated with AEMP-induced embryonic lethality and developmental toxicity in zebrafish embryos.
Resumo:
Objectives: Asynchrony between nuclear and cytoplasmic maturation, and possibly damage to the oocyte meiotic spindle, limits the application of in vitro maturation (IVM) in assisted reproduction. Several studies have suggested that Prematuration with meiosis blockers may improve oocyte quality after IVM, favoring early embryogenesis. Thus, we investigated the effect of Prematuration with the nuclear maturation inhibitor butyrolactone I (BLI) on the meiotic spindle and chromosomal configuration of bovine oocytes. Study design: Immature oocytes obtained from cows slaughtered in a slaughterhouse (n = 840) were divided into the following groups: (1) control (n = 325), submitted only to IVM in TCM199 for 24 h; (2) BLI 18 h (n = 208) submitted to meiotic blockage with 100 mu M BLI for 24 h (Prematuration) and then induction of IVM in TCM199 for 18 h; and (3) BLI 24 h (n = 307), pre-matured with 100 mu m BLI for 24 h followed by 24 h of IVM in TCM199. The oocytes were then fixed, stained by immunofluorescence for morphological visualization of both microtubules and chromatin, and evaluated. Results: Meiotic arrest occurred in 90.2% of the oocytes cultured with BLI. Maturation rates were similar for all groups (80.3%, 73.6% and 82.7% for the control, BLI 18 h and BLI 24 h groups, respectively). We observed 81.3% normal oocytes in metaphase II in the control group, and 80.0% and 81.2% in the BLI 18 h and BLI 24 h groups, respectively. The incidence of meiotic anomalies did not differ between groups (18.7%, 20.0% and 18.8% for the control, BLI 18 h and BLI 24 h, respectively). Conclusion: Prematuration with butyrolactone I reversibly arrests meiosis without damaging the meiotic spindle or the chromosome distribution of bovine oocytes after in vitro maturation. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Pervasive Developmental Disorders (PDDs) constitute a group of behavioral and neurobiological impairment conditions whose main features are delayed communicative and cognitive development. Genetic factors are reportedly associated with PDDs and particular genetic abnormalities are frequently found in specific diagnostic subgroups such as the autism spectrum disorders. This study evaluated cytogenetic and molecular parameters in 30 youths with autism or other PDDs. The fragile X syndrome was the most common genetic abnormality detected, presented by 1 patient with autism and 1 patient with PPD not-otherwise specified (PPD-NOS). One girl with PDD-NOS was found to have tetrasomy for the 15q11-q13 region, and one patient with autism exhibited in 2/100 metaphases an inv(7)(p15q36), thus suggesting a mosaicism 46,XX/46,XX,inv(7)(p15q36) or representing a coincidental finding. The high frequency of chromosomopathies support the hypothesis that PDDs may develop as a consequence to chromosomal abnormalities and justify the cytogenetic and molecular assessment in all patients with PDDs for establishment of diagnosis.
Resumo:
Objetive: To provide information for pediatricians and neonatologists to create realistic outcome expectations and thus help plan their actions. Sources of data: Searches were made of the Cochrane Library, MEDLINE, and Lilacs databases. Summary of the findings: The assessment of growth and development over the first 2-3 years must adjust chronological age with respect of the degree of prematurity. There is special concern regarding the prognoses of small for gestational age preterm infants, and for those with bronchopulmonary dysplasia. Attention must be directed towards improving the nutrition of extremely low birth weight infants during their first years of life; these infants have high prevalence levels of failure to catch-up on growth, diseases and rehospitalizations during their first 2 years. They are frequently underweight and shorter than expected during early childhood, but delayed catch-up growth may occur between 8 and 14 years. Extremely low birth weight infants are at increased risk of neurological abnormalities and developmental delays during their first years of life. Educational, psychological, and behavioral problems are frequent during school years. Teenage and adult outcomes show that although some performance differences persist, social integration is not impaired. Conclusions: The growth and neurodevelopment of all ELBW infants must be carefully monitored after discharge, to ensure that children and their families receive adequate support and intervention to optimize prognoses. Copyright © 2005 by Sociedade Brasileira de Pediatria.
Resumo:
Skeletal tissues of 49 humpback whales Megaptera novaeangliae that stranded between 2002 and 2011 along the Abrolhos Bank seashore and its adjacent waters in Brazil were studied. Twelve (24.5%) animals presented pathological changes in one or more bones. Degenerative changes and developmental malformations were most frequent (10.2% each), followed by inflammatory/infectious and traumatic lesions (8.2% each). Infectious diseases led to severe lesions of the caudal vertebrae of 2 whales. In one of these individuals, the lesions involved 6 caudal vertebrae, leading to ankylosis of 3 vertebrae. Degenerative changes were observed in the vertebral columns of 3 animals, involving the joints of 13 ribs of 1 individual, and in the humerus of 1 whale. Traumatic lesions, such as osseous callus in the ribs, were observed in 4 animals. In 1 whale, the rib showed severe osteomyelitis, possibly resulting from the infection of multiple fractures. Developmental abnormalities such as spina bifida on 3 cervical vertebrae of 1 whale, fusion of spinal processes on thoracic vertebrae of 1 individual and fusion of the first 2 ribs unilaterally or bilaterally in 4 animals were found. Chronic infectious conditions found in the axial skeleton may have restrained spinal mobility and had detrimental effects on the general health of the animals, contributing to stranding and death. To our knowledge, this is the first systematic study on skeletal lesions in stranded humpback whales.
Developmental Brain Dysfunction: Revival and Expansion of Old Concepts Based on New Genetic Evidence
Resumo:
Neurodevelopmental disorders can be caused by many different genetic abnormalities that are individually rare but collectively common. Specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct. This evidence of variability in the clinical manifestations of individual genetic variants and sharing of genetic causes among clinically distinct brain disorders is consistent with the concept of developmental brain dysfunction, a term we use to describe the abnormal brain function underlying a group of neurodevelopmental and neuropsychiatric disorders and to encompass a subset of various clinical diagnoses. Although many pathogenic genetic variants are currently thought to be variably penetrant, we hypothesise that when disorders encompassed by developmental brain dysfunction are considered as a group, the penetrance will approach 100%. The penetrance is also predicted to approach 100% when the phenotype being considered is a specific trait, such as intelligence or autistic-like social impairment, and the trait could be assessed using a continuous, quantitative measure to compare probands with non-carrier family members rather than a qualitative, dichotomous trait and comparing probands with the healthy population. Copyright 2013 Elsevier Ltd. All rights reserved.
Resumo:
Developmental venous anomalies (DVAs) are associated with epileptic seizures; however, the role of DVA in the epileptogenesis is still not established. Simultaneous interictal electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) recordings provide supplementary information to electroclinical data about the epileptic generators, and thus aid in the differentiation of clinically equivocal epilepsy syndromes. The main objective of our study was to characterize the epileptic network in a patient with DVA and epilepsy by simultaneous EEG/fMRI recordings. A 17-year-old woman with recently emerging generalized tonic-clonic seizures, and atypical generalized discharges, was investigated using simultaneous EEG/fMRI at the university hospital. Previous high-resolution MRI showed no structural abnormalities, except a DVA in the right frontal operculum. Interictal EEG recordings showed atypical generalized discharges, corresponding to positive focal blood oxygen level dependent (BOLD) correlates in the right frontal operculum, a region drained by the DVA. Additionally, widespread cortical bilateral negative BOLD correlates in the frontal and parietal lobes were delineated, resembling a generalized epileptic network. The EEG/fMRI recordings support a right frontal lobe epilepsy, originating in the vicinity of the DVA, propagating rapidly to both frontal and parietal lobes, as expressed on the scalp EEG by secondary bilateral synchrony. The DVA may be causative of focal epilepsies in cases where no concomitant epileptogenic lesions can be detected. Advanced imaging techniques, such as simultaneous EEG/fMRI, may thus aid in the differentiation of clinically equivocal epilepsy syndromes.
Resumo:
BACKGROUND In Mongolia, adequate early diagnosis and treatment of developmental hip dysplasia (DDH) have been unavailable and its incidence was unknown. We determined the incidence of ultrasonographic DDH in newborns and established adequate procedures for diagnosis and treatment of DDH at the largest maternity hospital in Ulaanbaatar, Mongolia. METHODOLOGY/PRINCIPAL FINDINGS During one year (Sept 2010 - Aug 2011) we assessed the hips newborns using ultrasound and Graf's classification of DDH. 8,356 newborns were screened; median age at screening was 1 day. We identified 14,873 Type 1 (89.0%), 1715 Type 2a (10.3%), 36 Type 2c (0.2%), 70 Type D (0.4%), 14 Type 3 (0.08%), and 4 Type 4 hips (0.02%). Children with Type 1 hips (normal) were discharged. Children with Type 2a hips (physiologically immature) received follow-up ultrasounds at monthly intervals. Children with Type 2c to 4 (DDH; deformed or misaligned hip joint) hips were treated with a Tubingen hip flexion splint and also followed up. The hip abnormalities resolved to mature hips in all children who were followed up. There was no evidence for severe treatment related complications. CONCLUSION/SIGNIFICANCE This study suggests that the incidence of DDH in Mongolian neonates is comparable to that in neonates in Europe. Early ultrasound-based assessment and splinting treatment of DDH led to mature hips in all children followed up. Procedures are feasible and will be continued.
Resumo:
We observed a hereditary phenotype in Alaskan Huskies, which was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier and an unrelated control revealed a 218 bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1 deficient mice have a much milder phenotype than either humans or dogs. Thus the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the non-intentional breeding of affected dogs.