2 resultados para a-LoCoH


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most endangered populations of Black-necked Cranes (Grus nigricollis), the central population, is declining due to habitat loss and degradation, but little is known about their space use patterns and habitat preferences. We examined the space use and habitat preferences of Black-necked Cranes during the winter of 2007-2008 at the Napahai wetland in northwest Yunnan, China, where approximately 300 Black-necked Cranes (>90% of the total central population) spent the winter. Euclidean distance analysis was employed to determine the habitat preferences of Black-necked Cranes, and a local nearest-neighbor, convex-hull construction method was used to examine space use. Our results indicate that Black-necked Cranes preferred shallow marsh and wet meadow habitats and avoided farmland and dry grassland. Core-use areas (50% isopleths) and total-use areas (100% isopleths) accounted for only 1.2% and 28.2% of the study area, respectively. We recommend that habitat protection efforts focus on shallow marsh and wet meadow habitats to maintain preferred foraging sites. Core-use areas, such as the primary foraging areas of Black-necked Cranes, should be designated as part of the core zone of the nature reserve. Monthly shifts in the core-use areas of the cranes also indicate that the reserve should be large enough to permit changes in space use. In addition to preserving habitat, government officials should also take measures to decrease human activity in areas used by foraging Black-necked Cranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial linear structures can cause habitat fragmentation by restricting movements of animals and altering home ranges. The negative impacts of these linear structures, especially of those other than roads, on arboreal species have been rarely studied even though these species can be greatly affected because of their fidelity to the canopy. We studied the home ranges of an endangered arboreal marsupial, the western ringtail possum (Pseudocheirus occidentalis), with a focus on the impacts of a road and an artificial waterway on their movement. We radiotracked 18 females and 19 males along a major road and an artificial waterway near Busselton, Western Australia, for 3 years and estimated home ranges using an a-local convex hull (a-LoCoH) estimator. No possum crossed the road successfully during the monitoring period while one crossed the waterway. Males had a mean home range size of 0.31 ± 0.044 (SE) ha, almost double that of the females at 0.16 ± 0.017 ha. Possums near the waterway had larger home ranges (0.30 ± 0.048 ha) than those near the road (0.19 ± 0.027 ha), and the size increased with proximity to the waterway, probably due to the greater availability of nearby canopy connections and the lower availability of preferable foliage. These results demonstrate that both the road and waterway represent significant physical barriers to possums, and the artificial waterway influenced home ranges more severely than the road. This suggests that linear infrastructure other than roads can affect movements of strictly arboreal animals, and negative impacts of these structures need to be assessed and mitigated by reconnecting their habitat, just as those of roads.