18 resultados para Zwitterions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent PET (photoinduced electron transfer) sensor 1 with monoaza-18-crown-6 ether and guanidinium receptor units shows a significant fluorescence enhancement with y-aminobutyric acid (GABA) in mixed aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-carbon and carbon-heteroatom bond formations constitute the central events in organic synthesis. In view of this, much of the research in organic synthesis has been focused on devising novel and efficient methods for such bond constructions. In general, polar, pericyclic and radical methodologies are employed for this purpose. The polar and radical reactions proceed via reactive intermediates such as carbanions, enols/enolates, enamines, carbocations, radical cations, radical anions, carbenes, zwitterions etc. In recent years, there has been enormous interest in the chemistry of zwitterionic species largely from the standpoint of their applications in multicomponent reactions (MCRs) and organocatalytic reactions. Zwitterions formed by the addition of nucleophiles to electrophilic π-systems such as acetylenic esters and azoesters have been the subject of extensive investigations; their synthetic utility, however, remained largely unexplored. Investigations in a number of laboratories, including our own, have shown that zwitterions of the type mentioned above on reaction with electrophiles give rise to carbo- and heterocyclic products by 1,3- or 1,4-dipolar cycloadditions. Recently, allenoates, another class of active π-systems were introduced to this field. Against this background, a systematic investigation of the reactions of various zwitterions derived from allenoates with different electrophiles especially 1,2-diones, were carried out. The results of these studies are embodied in the thesis entitled “Novel Synthesis of Carbocycles and Heterocycles Employing Zwitterions Derived from Allenic Esters”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two molecules in the asymmetric unit of adenosine-5'-carboxylic acid, C10H11N5O5, exist as zwitterions with N1 protonated and the carboxyl groups ionized. Both molecules are in an anti conformation with glycosyl torsion angles of -161.4(3) and -155.5(3)degrees. The ribose moieties adopt a C3-endo-C2-exo twist conformation. The pseudo-rotation parameters are P = 0.01(1) and 6.58(1)degrees, and tau(m) = 36.2(2) and 34.6(2)degrees, for molecules A and B, respectively. The carboxyl groups of A and B are not in the standard g(+), g(-) or t conformations. Both Watson-Crick sites, N1 and N6, of the adenine bases are involved in a pair of hydrogen bonds with the dissociated carboxyl groups, forming a cyclic tetramer. The adenine base of molecule A stacks on the ribose O4' atom of a symmetry-related B molecule at a distance of 2.88 Angstrom; the adenine base of B stacks in an analogous way at a distance of 2.91 Angstrom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we describe the synthesis and biomimetic activity of a series of N,N-disubstituted thiones and selones that contain an imidazole pharmacophore. The N,N-disubstituted thiones do not show any inhibitory activity towards LPO-catalyzed oxidation reactions, but their corresponding N,N-disubstituted selones exhibit inhibitory activity towards LPO-catalyzed oxidation reactions. Substituents on the N atom of the imidazole ring appear to have a significant effect on the inhibition of LPO-catalyzed oxidation and iodination reactions. Selones 16, 17, and 19, which contain methyl, ethyl, and benzyl substituents, exhibit similar inhibition activities towards LPO-catalyzed oxidation reactions with IC50 values of 24.4, 22.5, and 22.5M, respectively. However, their activities are almost three-fold lower than that of the commonly used anti-thyroid drug methimazole (MMI). In contrast, selone 21, which contains a NCH2CH2OH substituent, exhibits high inhibitory activity, with an IC50 value of 7.2M, which is similar to that of MMI. The inhibitory activity of these selones towards LPO-catalyzed oxidation/iodination reactions is due to their ability to decrease the concentrations of the co-substrates (H2O2 and I2), either by catalytically reducing H2O2 (anti-oxidant activity) or by forming stable charge-transfer complexes with oxidized iodide species. The inhibition of LPO-catalyzed oxidation/iodination reactions by N,N-disubstituted selones can be reversed by increasing the concentration of H2O2. Interestingly, all of the N,N-disubstituted selones exhibit high anti-oxidant activities and their glutathione peroxidase (GPx)-like activity is 4-12-fold higher than that of the well-known GPx-mimic ebselen. These experimental and theoretical studies suggest that the selones exist as zwitterions, in which the imidazole ring contains a positive charge and the selenium atom carries a large negative charge. Therefore, the selenium moieties of these selones possess highly nucleophilic character. The 77SeNMR chemical shifts for the selones show large upfield shift, thus confirming the zwitterionic structure in solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Chemii: Zakład Biochemii

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zwitterionic forms of the two simplest alpha-amino acids, glycine and l-alanine, in aqueous solution and the solid state have been modeled by DFT calculations. Calculations of the structures in the solid state, using PW91 or PBE functionals, are in good agreement with the reported crystal structures, and the vibrational spectra computed at the optimized geometries provide a good fit to the observed IR and Raman spectra in the solid state. DFT calculations of the structures and vibrational spectra of the zwitterions in aqueous solution at the B3-LYP/cc-pVDZ level were found to require both explicit and implicit solvation models. Explicit solvation was modeled by inclusion of five hydrogen-bonded water molecules attached to each of the five possible hydrogen-bonding sites in the zwitterion and the integration equation formalism polarizable continuum model (IEF-PCM) was employed, providing a satisfactory fit to observed IR and Raman spectra. Band assignments are reported in terms of potential-energy distributions, which differ in some respects to those previously reported for glycine and l-alanine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use molecular statics and dynamics to study the stability of L-aspartic acid both in vacuo and solvated by polar and non-polar molecules using density functional theory in the generalized gradient approximation. We find that structures stable in vacuo are unstable in aqueous solution and vice versa. From our simulations we are able to come to some conclusions about the mechanism of stabilisation of zwitterions by polar protic solvents, water and methanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine–adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554–1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis–syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The previously reported preparation of 1,3-dimethylimidazolium salts by the reaction of 1,3-dialkylimidazolium-2-carboxylate zwitterions with protic acids has been reinvestigated in detail, leading to the identification of two competing reactions: isomerisation and decarboxylation. The ability to control both pathways allows this methodology to be used as an effective, green, waste-free approach to readily prepare a wide range of ionic liquids in high yields. Additionally, this reaction protocol opens new possibilities in the formation of other imidazolium salts, whose syntheses were previously either very expensive (due to ion exchange protocols involving metals like Ag) or difficult to achieve (due to multiple extractions and large quantities of hard to remove inorganic by-products).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’imagerie médicale a longtemps été limitée à cause des performances médiocres des fluorophores organiques. Récemment la recherche sur les nanocristaux semi-conducteurs a grandement contribué à l’élargissement de la gamme d’applications de la luminescence dans les domaines de l’imagerie et du diagnostic. Les points quantiques (QDs) sont des nanocristaux de taille similaire aux protéines (2-10 nm) dont la longueur d’onde d’émission dépend de leur taille et de leur composition. Le fait que leur surface peut être fonctionnalisée facilement avec des biomolécules rend leur application particulièrement attrayante dans le milieu biologique. Des QDs de structure « coeur-coquille » ont été synthétisés selon nos besoins en longueur d’onde d’émission. Dans un premier article nous avons modifié la surface des QDs avec des petites molécules bi-fonctionnelles portant des groupes amines, carboxyles ou zwitterions. L’effet de la charge a été analysé sur le mode d’entrée des QDs dans deux types cellulaires. À l’aide d’inhibiteurs pharmacologiques spécifiques à certains modes d’internalisation, nous avons déterminé le mode d’internalisation prédominant. L’endocytose par les radeaux lipidiques représente le mode d’entrée le plus employé pour ces QDs de tailles similaires. D’autres modes participent également, mais à des degrés moindres. Des disparités dans les modes d’entrée ont été observées selon le ligand de surface. Nous avons ensuite analysé l’effet de l’agglomération de différents QDs sur leur internalisation dans des cellules microgliales. La caractérisation des agglomérats dans le milieu de culture cellulaire a été faite par la technique de fractionnement par couplage flux-force (AF4) associé à un détecteur de diffusion de la lumière. En fonction du ligand de surface et de la présence ou non de protéines du sérum, chacun des types de QDs se sont agglomérés de façon différente. À l'aide d’inhibiteur des modes d’internalisation, nous avons corrélé les données de tailles d’agglomérats avec leur mode d’entrée cellulaire. Les cellules microgliales sont les cellules immunitaires du système nerveux central (CNS). Elles répondent aux blessures ou à la présence d’inflammagènes en relâchant des cytokines pro-inflammatoires. Une inflammation non contrôlée du CNS peut conduire à la neurodégénérescence neuronale et est souvent observée dans les cas de maladies chroniques. Nous nous sommes intéressés au développement d’un nanosenseur pour mesurer des biomarqueurs du début de l’inflammation. Les méthodes classiques pour étudier l’inflammation consistent à mesurer le niveau de protéines ou molécules relâchées par les cellules stressées (par exemple monoxyde d’azote, IL-1β). Bien que précises, ces méthodes ne mesurent qu’indirectement l’activité de la caspase-1, responsable de la libération du l’IL-1β. De plus ces méthode ne peuvent pas être utilisées avec des cellules vivantes. Nous avons construit un nanosenseur basé sur le FRET entre un QD et un fluorophore organique reliés entre eux par un peptide qui est spécifiquement clivé par la caspase-1. Pour induire l’inflammation, nous avons utilisé des molécules de lipopolysaccharides (LPS). La molécule de LPS est amphiphile. Dans l’eau le LPS forme des nanoparticules, avec des régions hydrophobes à l’intérieure. Nous avons incorporé des QDs dans ces régions ce qui nous a permis de suivre le cheminement du LPS dans les cellules microgliales. Les LPS-QDs sont internalisés spécifiquement par les récepteurs TLR-4 à la surface des microglies. Le nanosenseur s’est montré fonctionnel dans la détermination de l’activité de la caspase-1 dans cellules microgliales activées par le LPS. Éventuellement, le senseur permettrait d’observer en temps réel l’effet de thérapies ciblant l’inflammation, sur l’activité de la caspase-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis entitled novel heterocyclic constructions mediated by nucleophilic carbenes and related chemistry, embodies the results of the investigations carried out to explore the reactivity patterns of the 1:1 zwitterions, generated in situ from various nucleophilic carbenes and DiMethyl AcetyleneDicarboxylate(DMAD) towards aldehydes and ketones. The traditional synthesis of complex organic molecules employs stepwise formation of bonds and involves multiple steps. Besides the sequential synthesis, in several instances, the desired product can also be obtained in one pot reactions of three or more starting compounds. Such reactions in which more than two starting materials react to form a product in such a way that the majority of the atoms of the starting materials can be found in the products are called multicomponent reactions(MCRs). The results of our investigations on the application of N-heterocyclic carbenes in multicomponent reaction with DMAD and aromatic aldehydes leading to the one pot synthesis of 2-oxy-maleate and furanone derivatives. It is interesting to note that dihydrofuran and lactone motifs are present in a number of biologically active natural products and other heterocyclic compounds. It is conceivable that the novel multicomponent reactions described herein will find application in the synthesis of a variety of heterocyclic compounds, and in natural product synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine-adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554-1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis-syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of multicarboxylic acid appended imidazolium ionic liquids ( McaILs) with chloride [ Cl](-) or bromide [ Br](-) as anions have been synthesized and characterized. Deprotonation of these ionic acids gives the corresponding zwitterions. Re-protonation of the zwitterions with strong Bronsted acids gives a series of new ionic acid-adducts, many of which remained as room-temperature ionic liquids. A new catalytic system, McaIL/PdCl2 for the selective catalytic oxidation of styrene to acetophenone with hydrogen peroxide as an oxidant has been attempted. In the presence of McaILs, it is found that the quantity of palladium chloride PdCl2 used can be greatly reduced while the activity ( TOF) and selectivity towards acetophenone are enhanced sharply. It is also shown that the catalytic properties of this system could be finely tuned through the molecular design of the McaILs. The best TOF value obtained so far is 146 h(-1) with 100% conversion of styrene at 93% selectivity to acetophenone. In addition, the catalytic activity has been maintained for at least ten catalytic cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bonding, photochemical and electrochemical properties of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] (alpha-diimine=2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2) and 2,2'-bipyrimidine (3)) are strongly influenced by the presence of bridging carbonyl ligands. Irradiation at 471 nm initially results in the population of a sigma(Ru-3)pi*(alpha-diimine) excited state. From this state, fast decay takes place to the optically hardly directly accessible pi(Ru/mu-CO) pi*(alpha-diimine) lowest excited state. These assignments agree with theoretical (TD-DFT) results, resonance Raman and picosecond time-resolved infrared spectra. The involvement of the bridging carbonyl ligands in the electron transfer increases the energetic barrier for the formation of open-structure photoproducts such as biradicals and zwitterions. Zwitterions were therefore only obtained in strongly coordinating media such as pyridine at 250 K. The bridging carbonyl ligands also stabilize the radical anions produced upon one-electron reduction of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] and observed with cyclic voltammetry, EPR and IR spectroelectrochemistry (for alpha-diimine=2,2'-bipyrimidine). In contrast, open-triangle intermediates formed along the reduction path to [Ru(CO)(2)(alpha-diimine)](n) and [Ru-2(CO)(8)](2-) are more reactive than their triosmium analogues.