369 resultados para Zoonotic
Resumo:
The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.
Resumo:
Background Southeast Asia has been at the epicentre of recent epidemics of emerging and re-emerging zoonotic diseases. Community-based surveillance and control interventions have been heavily promoted but the most effective interventions have not been identified. Objectives This review evaluated evidence for the effectiveness of community-based surveillance interventions at monitoring and identifying emerging infectious disease; the effectiveness of community-based control interventions at reducing rates of emerging infectious disease; and contextual factors that influence intervention effectiveness. Inclusion criteria Participants Communities in Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand and Viet Nam. Types of intervention(s) Non-pharmaceutical, non-vaccine, and community-based surveillance or prevention and control interventions targeting rabies, Nipah virus , dengue, SARS or avian influenza. Types of outcomes Primary outcomes: measures: of infection or disease; secondary outcomes: measures of intervention function. Types of studies Original quantitative studies published in English. Search strategy Databases searched (1980 to 2011): PubMed, CINAHL, ProQuest, EBSCOhost, Web of Science, Science Direct, Cochrane database of systematic reviews, WHOLIS, British Development Library, LILACS, World Bank (East Asia), Asian Development Bank. Methodological quality Two independent reviewers critically appraised studies using standard Joanna Briggs Institute instruments. Disagreements were resolved through discussion. Data extraction A customised tool was used to extract quantitative data on intervention(s), populations, study methods, and primary and secondary outcomes; and qualitative contextual information or narrative evidence about interventions. Data synthesis Data was synthesised in a narrative summary with the aid of tables. Meta-analysis was used to statistically pool quantitative results. Results Fifty-seven studies were included. Vector control interventions using copepods, environmental cleanup and education are effective and sustainable at reducing dengue in rural and urban communities, whilst insecticide spraying is effective in urban outbreak situations. Community-based surveillance interventions can effectively identify avian influenza in backyard flocks, but have not been broadly applied. Outbreak control interventions for Nipah virus and SARS are effective but may not be suitable for ongoing control. Canine vaccination and education is more acceptable than culling, but still fails to reach coverage levels required to effectively control rabies. Contextual factors were identified that influence community engagement with, and ultimately effectiveness of, interventions. Conclusion Despite investment in community-based disease control and surveillance in Southeast Asia, published evidence evaluating interventions is limited in quantity and quality. Nonetheless this review identified a number of effective interventions, and several contextual factors influencing effectiveness. Identification of the best programs will require comparative evidence of effectiveness acceptability, cost-effectiveness and sustainability.
Resumo:
Review question/objective The objective of this review is to identify the effectiveness of surveillance systems and community-based interventions in identifying and responding to emerging and re-emerging zoonotic infections in Southeast Asia (SE Asia). More specifically the research questions are: 1. What is the effectiveness of community-based surveillance interventions designed to identify emerging zoonotic infectious diseases? 2. What is the effectiveness of non-pharmaceutical community-based interventions designed to prevent transmission of emerging zoonotic infectious diseases? 3. How do factors related to the emergence and management of emerging zoonotic infectious diseases impact the effectiveness of interventions designed to identify and respond to them?
Resumo:
Menangle virus (MenPV) is a zoonotic paramyxovirus capable of causing disease in pigs and humans. It was first isolated in 1997 from stillborn piglets at a commercial piggery in New South Wales, Australia, where an outbreak of reproductive disease occurred. Neutralizing antibodies to MenPV were detected in various pteropid bat species in Australia and fruit bats were suspected to be the source of the virus responsible for the outbreak in pigs. However, previous attempts to isolate MenPV from various fruit bat species proved fruitless. Here, we report the isolation of MenPV from urine samples of the black flying fox, Pteropus alecto, using a combination of improved procedures and newly established bat cell lines. The nucleotide sequence of the bat isolate is 94% identical to the pig isolate. This finding provides strong evidence supporting the hypothesis that the MenPV outbreak in pigs originated from viruses in bats roosting near the piggery. © 2012 Printed in Great Britain.
Resumo:
Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Brachyspira pilosicoli is a potentially zoonotic anaerobic intestinal spirochaete that is one of several species causing avian intestinal spirochaetosis. The aim of this study was to develop a reproducible model of infection in point-of-lay chickens and compare the virulence of two strains of B. pilosicoli in a model using experimentally challenged laying chickens. Seventeen-week-old commercial laying chickens were experimentally challenged by oral gavage with either B. pilosicoli strain B2904 or CPSp1, following an oral dose of 10 % sodium bicarbonate to neutralize acidity in the crop. Approximately 80 % of the chickens became colonized and exhibited increased faecal moisture content, reduced weight gain and delayed onset of lay. Tissues sampled at post-mortem examination were analysed to produce a quantitative output on the number of spirochaetes present and hence, the extent of colonization. The liver and spleen were colonized, and novel histopathology was observed in these tissues. The infection model we report here has potential use in studies to improve our understanding of the mechanisms by which Brachyspira elicit disease in poultry and in testing novel intervention strategies.
Resumo:
The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus.
Resumo:
The aim of the present study was to determine the coinfection of Leishmania sp. with Toxoplasma gondii, Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) in a population of cats from an endemic area for zoonotic visceral leishmaniasis. An overall 66/302 (21.85%) cats were found positive for Leishmania sp., with infection determined by direct parasitological examination in 30/302(9.93%), by serology in 46/302(15.23%) and by both in 10/302 (3.31%) cats. Real time PCR followed by amplicon sequencing successfully confirmed Leishmania infantum (syn Leishmania chagasi) infection. Out of the Leishmania infected cats, coinfection with FIV was observed in 12/66(18.18%), with T. gondii in 17/66 (25.75%) and with both agents in 5/66(7.58%) cats. FeLV was found only in a single adult cat with no Leishmania infection. A positive association was observed in coinfection of Leishmania and FIV (p < 0.0001), but not with T. gondii (p > 0.05). In conclusion, cats living in endemic areas of visceral leishmaniasis are significantly more likely to be coinfected with Fly, which may present confounding clinical signs and therefore cats in such areas should be always carefully screened for coinfections. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Coprological examination was used to estimate the prevalence of gastrointestinal parasites in stray and domiciled dogs from Botucatu, São Paulo State, Brazil. Risk factors for dog infection were assessed in relation to demographic, husbandry and management data. The dog owners completed a questionnaire survey on some aspects of dog parasitism such as parasite species, mechanisms of infection, awareness of zoonotic diseases and history of anthelmintic usage. Parasites were found in the faeces of 138 dogs, with an overall prevalence of 54.3%. Dogs harbouring one parasite were more common (31.4%) than those harbouring two (18.5%), three (3.2%) or four (1.2%). The following parasites and their respective frequencies were detected: Ancylostoma (37.8%), Giardia (16.9%), Toxocara canis (8.7%), Trichuris vulpis (7.1%), Dipylidium caninum (2.4%), Isospora (3.5%), Cryptosporidium (3.1%) and Sarcocystis (2.7%). Stray dogs were found more likely to be poliparasitized (P < 0.01) and presented higher prevalence of Ancylostoma, T. canis and Giardia (P < 0.01) than domiciled ones. Toxocara canis was detected more frequently in dogs with < 6 months of age (P < 0.05) and no effect of sex or breed could be observed (P > 0.05). Except for Ancylostoma, that showed a significantly higher prevalence in dogs living in a multi-dog household (P < 0.01), parasite prevalences were similar in single- and multi-dog household. The answers of dog owners to the questionnaire showed that the majority does not know the species of dog intestinal parasites, the mechanisms of transmission, the risk factors for zoonotic infections, and specific prophylactic measures. The predominance of zoonotic species in dogs in the studied region, associated with the elevated degree of misinformation of the owners, indicates that the risk of zoonotic infection by canine intestinal parasite may be high, even in one of the most developed regions of Brazil.