990 resultados para Zircon O–Hf isotopes
Resumo:
The Biarjmand granitoids and granitic gneisses in northeast Iran are part of the Torud–Biarjmand metamorphic complex, where previous zircon U–Pb geochronology show ages of ca. 554–530 Ma for orthogneissic rocks. Our new U–Pb zircon ages confirm a Cadomian age and show that the granitic gneiss is ~30 million years older (561.3 ± 4.7 Ma) than intruding granitoids(522.3 ± 4.2 Ma; 537.7 ± 4.7 Ma). Cadomian magmatism in Iran was part of an approximately 100-million-year-long episode of subduction-related arc and back-arc magmatism, which dominated the whole northern Gondwana margin, from Iberia to Turkey and Iran. Major REE and trace element data show that these granitoids have calc-alkaline signatures. Their zircon O (δ18O = 6.2–8.9‰) and Hf (–7.9 to +5.5; one point with εHf ~ –17.4) as well as bulk rock Nd isotopes (εNd(t)= –3 to –6.2) show that these magmas were generated via mixing of juvenile magmas with an older crust and/or melting of middle continental crust. Whole-rock Nd and zircon Hf model ages (1.3–1.6 Ga) suggest that this older continental crust was likely to have been Mesoproterozoic or even older. Our results, including variable zircon εHf(t) values, inheritance of old zircons and lack of evidence for juvenile Cadomian igneous rocks anywhere in Iran, suggest that the geotectonic setting during late Ediacaran and early Cambrian time was a continental magmatic arc rather than back-arc for the evolution of northeast Iran Cadomian igneous rocks.
Resumo:
Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Whole rock Pb isotope data can be used to determine the provenance of different blocks within the Rodinia supercontinent, providing a test for paleogeographic reconstructions. Calculated isotopic values for the source region of the Grenville-deformed SW Amazon craton (Rondonia, Brazil), anchored by published U-Pb zircon ages, are compared to those from the Grenville belt of North America and Grenvillian basement inliers in the southern Appalachians. Both the SW Amazon craton and the allochthonous Blue Ridge/Mars Hill terrane are defined by a similar Pb isotopic signature, indicating derivation from an ancient source region with an elevated U/Pb ratio. In contrast, the Grenville Province of Laurentia (extending from Labrador to the Llano Uplift of Texas) is characterized by a source region with a distinctly lower, time-integrated U/Pb ratio. Published U-Pb zircon ages (ca. 1.8 Ga) and Nd model ages (1.4-2.2 Ga) for the Blue Ridge/Mars Hill terrane also suggest an ancient provenance very different from the rest of the adjacent Grenville belt, which is dominated by juvenile 1.3-1.5 Ga rocks. The presence of mature continental material in rocks older than 1.15 Ga in the Blue Ridge/ Mars Hill terrane is consistent with characteristics of basement rocks from the SW Amazon craton. High-grade metamorphism of the Blue Ridge/Mars Hill basement resulted in purging of U, consistent with observations of the rest of the North American Grenville province. In contrast, the Grenvillian metamorphic history of the Amazon appears to have been much more heterogeneous, with both U enrichment and U depletion recorded locally. We propose that the Blue Ridge/ Mars Hill portion of the Appalachian basement is of Amazonian provenance and was transferred to Laurentia during Grenvillian orogenesis after similar to1.15 Ga. The presence of these Amazonian rocks in southeastern Laurentia records the northward passage of the Amazon craton along the Laurentian margin, following the original collision with southernmost Laurentia at ca. 1.2 Ga. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.
Resumo:
This study was part of an integrated project developed in response to concerns regarding current and future land practices affecting water quality within coastal catchments and adjacent marine environments. Two forested coastal catchments on the Fraser Coast, Australia, were chosen as examples of low-modification areas with similar geomorphological and land-use characteristics to many other coastal zones in southeast Queensland. For this component of the overall project, organic , physico-chemical (Eh, pH and DO), ionic (Fe2+, Fe3+), and isotopic (ä13CDIC, ä15NDIN ä34SSO4) data were used to characterise waters and identify sources and processes contributing to concentrations and form of dissolved Fe, C, N and S within the ground and surface waters of these coastal catchments. Three sites with elevated Fe concentrations are discussed in detail. These included a shallow pool with intermittent interaction with the surface water drainage system, a monitoring well within a semi-confined alluvial aquifer, and a monitoring well within the fresh/saline water mixing zone adjacent to an estuary. Conceptual models of processes occurring in these environments are presented. The primary factors influencing Fe transport were; microbial reduction of Fe3+ oxyhydroxides in groundwaters and in the hyporheic zone of surface drainage systems, organic input available for microbial reduction and Fe3+ complexation, bacterial activity for reduction and oxidation, iron curtain effects where saline/fresh water mixing occurs, and variation in redox conditions with depth in ground and surface water columns. Data indicated that groundwater seepage appears a more likely source of Fe to coastal waters (during periods of low rainfall) via tidal flux. The drainage system is ephemeral and contributes little discharge to marine waters. However, data collected during a high rainfall event indicated considerable Fe loads can be transported to the estuary mouth from the catchment.