419 resultados para Zimbabwe craton
Resumo:
ZusammenfassungSpätarchaische Sedimentgesteine (ca. 2,65 Milliarden Jahre alt) wurden in Grünsteingürteln des Simbabwe Kratons untersucht. In dem Belingwe Grünsteingürtel ist granitoides Grundgebirge von einer allochthonen Einheit aus vulkanischen Gesteinen und Vorlandbeckensedimenten überlagert. Die sedimentäre Abfolge besteht aus Flachwasserkalken und Turbiditen. Unterschiedliche Faziestypen der Kalksteine sind in sedimentäre Verflachungszyklen angeordnet. Eustatische Meeresspiegelschwankungen werden als Ursache der zyklischen Sedimentation angenommen. Sedimentologische, geochemische und strukturelle Analysen zeigen die Bedeutung horizontal-tektonischer Prozesse für die Entstehung dieses Grünsteingürtels an.Sedimentgesteine des Midlands Grünsteingürtels lagern zwischen ozeanischen, mafischen Vulkaniten und kontinentalen, granitoiden Gneisen. Die Art der Abfolge sedimentärer Fazies, beginnend mit Turbiditen und überlagert von flachmarinen Schelfsedimenten und alluvialen Ablagerungen, sowie geologische und geochemische Hinweise aus den benachbarten Gesteinsserien lassen auf Ablagerung während der Kollision zwischen einem ozeanischen Plateau/Inselbogen und einem kontinentalen Krustenfragmentes schließen.In dem Bindura-Shamva Grünsteingürtel können zwei Sedimentgesteinseinheiten unterschieden werden, eine alluvialflachmarine Abfolge und eine tiefmarinfluviatile Abfolge. Extensionstektonik verursachte wahrscheinlich die Bildung des Sedimentbeckens. Die spätere Phase der Beckenbildung war jedoch ähnlich jener in modernen Vorlandbecken.Schichtparallele Eisensteinhorizonte sind häufig entlang von Sediment-Vulkanit-Kontakten zu finden. Diese Gesteine werden als silifizierte und von Sulfiden imprägnierte Scherzonen interpretiert. Syntektonische hydrothermale Alteration von Gesteinen entlang der Störungszonen führte zur Bildung dieser 'tektonischen Eisensteine'.
Resumo:
Re-Os data for chromite separates from 10 massive chromitite seams sampled along the 550-km length of the 2.58-Ga Great Dyke layered igneous complex, Zimbabwe, record initial 187Os/188Os ratios in the relatively narrow range between 0.1106 and 0.1126. This range of initial 187Os/188Os values is only slightly higher than the value for the coeval primitive upper mantle (0.1107) as modeled from the Re-Os evolution of chondrites and data of modern mantle melts and mantle derived xenoliths. Analyses of Archean granitoid and gneiss samples from the Zimbabwe Craton show extremely low Os concentrations (3-9 ppt) with surprisingly unradiogenic present-day 187Os/188Os signatures between 0.167 and 0.297. Only one sample yields an elevated 187Os/188Os ratio of 1.008. Using these data, the range of crustal contamination of the Great Dyke magma would be minimally 0%-33% if the magma source was the primitive upper mantle, whereas the range estimated from Nd and Pb isotope systematics is 5%-25%. If it is assumed that the primary Great Dyke magma derived from an enriched deep mantle reservoir (via a plume), a better agreement can be obtained. A significant contribution from a long-lived subcontinental lithospheric mantle (SCLM) reservoir with subchondritic Re/Os to the Great Dyke melts cannot be reconciled with the Os isotope results at all. However, Os isotope data on pre-Great Dyke ultramafic complexes of the Zimbabwe Craton and thermal modeling show that such an SCLM existed below the Zimbabwe Craton at the time of the Great Dyke intrusion. It is therefore concluded that large melt volumes such as that giving rise to the Great Dyke were able to pass lithospheric mantle keels without significant contamination in the late Archean. Because the ultramafic-mafic melts forming the Great Dyke must have originated below the SCLM (which extends to at least a 200-km depth ), the absence of an SCLM signature precludes a subduction-related magma-generation process.
Resumo:
The different types of Archean gold deposits in the Manica greenstone belt of western Mozambique are briefely describcd in the context of their geological setting. Particular attention is devoted to the mineralogy, petrology, geological controls, refractoriness to treatment and prospection of these gold deposits. The genesis of gold was stratigraphically controled, but structural and metamorphic events related to the intrusion of late granites have concentrated and relocated the gold in different geological environments. The possibility of additional gold occurences in different rocks sequences is discussed as well as possible guidelines for future research and development.
Resumo:
Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5–40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction parallel to the eastern limit of the Kaapvaal craton. We conclude that these two extensional structures herald the southward continuation of the EAR, and infer a structural control of the transition between the two types of crust on the ongoing deformation.
Resumo:
This study presents an integrated mineralogical-geochemical data base on fine-grained sediments transported by all major rivers of southern Africa, including the Zambezi, Okavango, Limpopo, Olifants, Orange and Kunene. Clay mineralogy, bulk geochemistry, Sr and Nd isotopic signatures of river mud, considered as proxy of suspended load, are used to investigate the influence of source-rock lithology and weathering intensity on the composition of clay and silt produced in subequatorial to subtropical latitudes. Depletion in mobile alkali and alkaline-earth metals, minor in arid Namibia, is strong in the Okavango, Kwando and Upper Zambezi catchments, where recycling is also extensive. Element removal is most significant for Na, and to a lesser extent for Sr. Depletion in K, Ca and other elements, negligible in Namibia, is moderate elsewhere. The most widespread clay minerals are smectite, dominant in muds derived from Karoo or Etendeka flood basalts, or illite and chlorite, dominant in muds derived from metasedimentary rocks of the Damara Orogen or Zimbabwe Craton. Kaolinite represents 30-40% of clay minerals only in Okavango and Upper Zambezi sediments sourced in humid subequatorial Angola and Zambia. After subtracting the effects of recycling and of local accumulation of authigenic carbonates in soils, the regional distribution of clay minerals and chemical indices consistently reflect weathering intensity primarily controlled by climate. Bulk geochemistry identifies most clearly volcaniclastic sediments and mafic sources in general, but cannot discriminate the other sources of detritus in detail. Instead, Sr and Nd isotopic fingerprints are insensitive to weathering, and thus mirror faithfully the tectonic structure of the southern African continent. Isotopic tools thus represent a much firmer basis than bulk geochemistry or clay mineralogy in the provenance study of mudrocks.
Resumo:
We report comprehensive trace element and Sr-isotope data for microbial carbonates from the Archaean Mushandike limestone, Masvingo Greenstone Belt, Zimbabwe. The stromatolites have very coherent REE + Y patterns and share the essential shale-normalised characteristics of other Archaean marine precipitates (positive La and Gd anomalies, absence of a negative Cc anomaly and a strongly superchondritic Y/Ho ratio). Mixing models constrain the maximum amount of shale contamination to 0.25-1% and calculated detritus-free carbonate REE + Y systematics require precipitation from seawater. In terms of light-REE over heavy-REE depletion, however, the studied samples are very different from all other known Archaean marine precipitates. In shale-normalised plots, the Mushandike samples yield a negative slope. A very restricted, regional input source of the dissolved load is indicated because normalisation with locally occurring tonalite gneiss REE + Y data yields a pattern closely resembling typical shale-normalised Archaean marine chemical sediments. The disappearance of a negative Eu anomaly when patterns are normalised with local tonalite gneiss strengthens this interpretation. Sr-isotope ratios are strongly correlated with trace element contents and ratios, which explains the modest scatter in Sr-isotope ratios as representing (minor) clastic contamination. Importantly, even the least contaminated samples have very radiogenic initial Sr-87/Sr-86 ratios (0.7184) implying Sr input from an ancient high Rb/Sr source, such as the early Archaean gneisses of south-central Zimbabwe. A local ancient (3.5-3.8 Ga) source is also indicated by previously published Pb-isotope datasets for the Mushandike stromatolites. This is entirely compatible with the occurrence of 3.7-3.8 Ga zircons in quartzites and metapelites from comparably old greenstone belts within less than 150 km of the studied locality. Comparison of the Pb-isotope ratios of the Mushandike stromatolites with 2.7 and 2.6 Ga old stromatolites from the neighbouring, Belingwe Greenstone Belt demonstrates differences in initial isotope composition that relate to the extent of exchange with the open ocean. The development of numerous basins on old continental crust, with water masses variably restricted from the open ocean. suggests a lack of strong vertical topography on this late Archaean craton. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Os isótopos estáveis de O, H e S foram utilizados para investigar a origem das rochas magmáticas nos Terrenos Jauru e Pontes e Lacerda do SW do Craton Amazônico, estado de Mato Grosso, Brasil. No Terreno Jauru as rochas granitóides do Greenstone belt Alto Jauru e da Suíte Cachoeirinha apresentam valores de δ18O entre +9,0‰ e +6,3‰ que indicam derivação a partir de magmas juvenis. Na Suíte Intrusiva Rio Branco valores de δ18O para rochas básicas estão entre +5,4‰ e +5,8‰ e para rochas félsicas entre +8,7‰ e +9,0‰; rochas intermediárias apresentam valores entre +7,3‰ e +8,3‰. Os valores mais baixos de δ18O, obtidos nas rochas básicas, são compatíveis com derivação mantélica, porém as rochas félsicas apresentam valores de δ18O compatíveis com origem crustais. Análises de isótopos estáveis de H (rocha total) forneceram valores de δD entre - 83‰ e -92‰, diferente das assinaturas de rochas metamórficas e de águas meteóricas. Resultados em sulfetos para isótopos estáveis de S em rochas básicas e intermediárias desta suíte apresentam valores de δ34S coerentes com uma fonte mantélica (entre + 0,7‰ e +3,8‰), enquanto os valores de δ34S (entre +5,2‰ e +6,1‰) obtidos nas rochas félsicas sugerem participação crustal na sua gênese. Na Suíte Santa Helena (Terreno Pontes e Lacerda) os resultados obtidos para δ18O se agrupam entre +4,4‰ e +8,9‰ indicando uma origem mantélica. O presente estudo confirma a importância da aplicação de isótopos estáveis para a compreensão de processos magmáticos e evolução crustal.
Resumo:
The cost and risk associated with mineral exploration in Australia increases significantly as companies move into deeper regolith-covered terrain. The ability to map the bedrock and the depth of weathering within an area has the potential to decrease this risk and increase the effectiveness of exploration programs. This paper is the second in a trilogy concerning the Grant's Patch area of the Eastern Goldfields. The recent development of the VPmg potential field inversion program in conjunction with the acquisition of high-resolution gravity data over an area with extensive drilling provided an opportunity to evaluate three-dimensional gravity inversion as a bedrock and regolith mapping tool. An apparent density model of the study area was constructed, with the ground represented as adjoining 200 m by 200 m vertical rectangular prisms. During inversion VPmg incrementally adjusted the density of each prism until the free-air gravity response of the model replicated the observed data. For the Grant's Patch study area, this image of the apparent density values proved easier to interpret than the Bouguer gravity image. A regolith layer was introduced into the model and realistic fresh-rock densities assigned to each basement prism according to its interpreted lithology. With the basement and regolith densities fixed, the VPmg inversion algorithm adjusted the depth to fresh basement until the misfit between the calculated and observed gravity response was minimised. The resulting geometry of the bedrock/regolith contact largely replicated the base of weathering indicated by drilling with predicted depth of weathering values from gravity inversion typically within 15% of those logged during RAB and RC drilling.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Os isótopos estáveis de O, H e S foram utilizados para investigar a origem das rochas magmáticas nos Terrenos Jauru e Pontes e Lacerda do SW do Craton Amazônico, estado de Mato Grosso, Brasil. No Terreno Jauru as rochas granitóides do Greenstone belt Alto Jauru e da Suíte Cachoeirinha apresentam valores de δ18O entre +9,0 e +6,3 que indicam derivação a partir de magmas juvenis. Na Suíte Intrusiva Rio Branco valores de δ18O para rochas básicas estão entre +5,4 e +5,8 e para rochas félsicas entre +8,7 e +9,0; rochas intermediárias apresentam valores entre +7,3 e +8,3. Os valores mais baixos de δ18O, obtidos nas rochas básicas, são compatíveis com derivação mantélica, porém as rochas félsicas apresentam valores de δ18O compatíveis com origem crustais. Análises de isótopos estáveis de H (rocha total) forneceram valores de δD entre - 83 e -92, diferente das assinaturas de rochas metamórficas e de águas meteóricas. Resultados em sulfetos para isótopos estáveis de S em rochas básicas e intermediárias desta suíte apresentam valores de δ34S coerentes com uma fonte mantélica (entre + 0,7 e +3,8), enquanto os valores de δ34S (entre +5,2 e +6,1) obtidos nas rochas félsicas sugerem participação crustal na sua gênese. Na Suíte Santa Helena (Terreno Pontes e Lacerda) os resultados obtidos para δ18O se agrupam entre +4,4 e +8,9 indicando uma origem mantélica. O presente estudo confirma a importância da aplicação de isótopos estáveis para a compreensão de processos magmáticos e evolução crustal.
Resumo:
The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.