990 resultados para ZYMOSAN-INDUCED ARTHRITIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kanashiro A, Pessini AC, Machado RR, Malvar DC, Aguiar FA, Soares DM, Vale ML, Souza GEP. Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol 296: R1631-R1640, 2009. First published February 25, 2009; doi:10.1152/ajpregu.90527.2008.-The present study investigated the febrile response in zymosan-induced arthritis, as well as the increase in PGE(2) concentration in the cerebrospinal fluid (CSF), along with the effects of antipyretic drugs on these responses in rats. Zymosan intra-articularly injected at the dose of 0.5 mg did not affect the body core temperature (Tc) compared with saline (control), whereas at doses of 1 and 2 mg, zymosan promoted a flattened increase in Tc and declined thereafter. The dose of 4 mg of zymosan was selected for further experiments because it elicited a marked and long-lasting Tc elevation starting at 3 1/2 h, peaking at 5 1/2 h, and remaining until 10 h. This temperature increase was preceded by a decrease in the tail skin temperature, as well as hyperalgesia and edema in the knee joint. No febrile response was observed in the following days. In addition, zymosan-induced fever was not modified by the sciatic nerve excision. Zymosan increased PGE2 concentration in the CSF but not in the plasma. Oral pretreatment with ibuprofen (5-20 mg/kg), celecoxib (1-10 mg/kg), dipyrone (60-240 mg/kg), and paracetamol (100-200 mg/kg) or subcutaneous injection of dexamethasone (0.25-1.0 mg/kg) dose-dependently reduced or prevented the fever during the zymosan-induced arthritis. Celecoxib (5 mg/kg), paracetamol (150 mg/kg), and dipyrone (120 mg/kg) decreased CSF PGE2 concentration and fever during zymosan-induced arthritis, suggesting the involvement of PGE2 in this response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 mu g/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ETA or ETB receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B-4 at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ETA and ETB receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ETA and ETB receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Lipoxin A(4) (LXA(4)) is a lipid mediator involved in the resolution of inflammation. Increased levels of LXA(4) in synovial fluid and enhanced expression of the formyl peptide receptor 2/lipoxin A(4) receptor (FPR2/ALX) in the synovial tissues of rheumatoid arthritis patients have been reported. Endothelins (ETs) play a pivotal pro-inflammatory role in acute articular inflammatory responses. Here, we evaluated the anti-inflammatory role of LXA(4), during the acute phase of zymosan-induced arthritis, focusing on the modulation of ET-1 expression and its effects. EXPERIMENTAL APPROACH The anti-inflammatory effects of LXA(4), BML-111 (agonist of FPR2/ALX receptors) and acetylsalicylic acid (ASA) pre- and post-treatments were investigated in a murine model of zymosan-induced arthritis. Articular inflammation was assessed by examining knee joint oedema; neutrophil accumulation in synovial cavities; and levels of prepro-ET-1 mRNA, leukotriene (LT)B(4), tumour necrosis factor (TNF)-alpha and the chemokine KC/CXCL1, after stimulation. The direct effect of LXA(4) on ET-1-induced neutrophil activation and chemotaxis was evaluated by shape change and Boyden chamber assays respectively. KEY RESULTS LXA(4), BML-111 and ASA administered as pre- or post-treatment inhibited oedema and neutrophil influx induced by zymosan stimulation. Zymosan-induced preproET-1 mRNA, KC/CXCL1, LTB(4) and TNF-alpha levels were also decreased after LXA(4) pretreatment. In vitro, ET-1-induced neutrophil chemotaxis was inhibited by LXA4 pretreatment. LXA(4) treatment also inhibited ET-1-induced oedema formation and neutrophil influx into mouse knee joints. CONCLUSION AND IMPLICATION LXA(4) exerted anti-inflammatory effects on articular inflammation through a mechanism that involved the inhibition of ET-1 expression and its effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé L'objectif de cette étude est la compréhension des mécanismes sous-jacents à l'inflammation articulaire dans un modèle murin d'arthrite induite par le zymosan (ZIA). En particulier, la participation du récepteur Toll 2 (TLR2) et du complément C3 a été recherchée. L'inflammation articulaire a été quantifiée par l'accumulation de Technetium (Tc) in vivo, et par histologie des articulations arthritiques. Les réponses humorales et cellulaires induites par le zymosan ont été quantifiées par la prolifération lymphocytaire in vitro et par la mesure de la production d'anticorps dirigés contre le zymosan in vivo. L'inflammation associée à l'arthrite induite au zymosan est, d'après le Tc-uptake, d'aspect biphasique, avec un pic après 1 jour, puis une deuxième phase plus tardive. La deuxième phase persiste jusqu'au 24 ème jour et est associée au développement d'une immunité spécifique contre le zymosan. Les souris déficientes pour TLR-2 présentent une réduction significative de l'inflammation articulaire précoce (jour 1) et tardive (jour 24), ainsi qu'une nette diminution de l'infiltrat inflammatoire dans la membrane synoviale. De plus, la prolifération de cellules du ganglion lymphatique ainsi que le taux d'IgG dirigés contre le zymosan sont diminués de façon significative après 25 jour d'arthrite chez les souris déficientes en TLR2 par rapport aux souris sauvages contrôles. Par contraste, chez les souris déficientes pour C3 on n'observe pas de différence dans l'uptake de Tc ou le scoring histologique par rapport à la lignée sauvage. Ces résultats montrent que l'arthrite induite au zymosan n'est pas seulement un modèle d'inflammation aigue, mais que l'inflammation synoviale persiste même après 25 jours. Ce modèle implique à la fois des mécanismes d'immunité innée et acquise. Le signalling via TLR 2 semble jouer in rôle dans l'immunité au zymosan et pourrait être responsable de la nature biphasique de ce modèle d'arthrite. Abstract The interplay between the innate and acquired immune systems in chronic inflammation is not well documented. We have investigated the mechanisms of inflammation in murine zymosan-induced arthritis (ZIA) in the light of recent data on the roles of Toll-like receptor 2 (TLR2) and Dentin-1 in the activation of monocyte/macrophages by zymosan. The severity of inflammation, joint histology, lymphocyte proliferation and antibody production in response to zymosan were analyzed in mice deficient in TLR2 and complement C3, and the effects of Dentin-1 inhibition by laminarin were studied. In comparison with wild-type animals, TLR2-deficient mice showed a significant decrease in the early (day 1) and late phases (day 24) of joint inflammation. C3-deficient mice showed no differences in technetium uptake or histological scoring. TLR2-deficient mice also showed a significant decrease in lymph node cell proliferation in response to zymosan and a lower IgG antibody response to zymosan at day 25 in comparison with wild-type controls, indicating that TLR2 signalling has a role in the development of acquired immune responses to zymosan. Although laminarin, a soluble β-glucan, was able to significantly inhibit zymosan uptake by macrophages in vitro, it had no effect on ZIA in vivo. These results show that ZIA is more prolonged than was originally described and involves both the innate and acquired immune pathways. C3 does not seem to have a major role in this model of joint inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zymosan induced arthritis is thought to be dependent on activation of the alternative pathway of complement and is short lived. Recently it has been demonstrated that zymosan is capable of activating the innate immune system via toll-like receptor 2 (TLR2) and TLR6. These receptors play a role in linking the innate to the adaptive immune response. We have therefore reinvestigated the mechanisms by which zymosan induces arthritis by analyzing the kinetic of inflammation, the joint histology, lymphocyte proliferation in wild type and TLR2 deficient mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthritic pain is a serious health problem that affects a large number of patients. Toll-like receptors (TLRs) activation within the joints has been implicated in pathophysiology of arthritis. However, their role in the genesis of arthritic pain needs to be demonstrated. In the present study, it was addressed the participation of TLR2 and TLR4 and their adaptor molecule MyD88 in the genesis of joint hypernociception (a decrease in the nociceptive threshold) during zymosan-induced arthritis. Zymosan injected in the tibio-tarsal joint induced mechanical hypernociception in C57BL/6 wild type mice that was reduced in TLR2 and MyD88 null mice. On the other hand, zymosan-induced hypernociception was similar in C3H/HePas and C3H/Hej mice (TLR4 mutant mice). Zymosan-induced joint hypernociception was also reduced in TNFR1 null mice and in mice treated with IL-1 receptor antagonist or with an antagonist of CXCR1/2. Moreover, the joint production of TNF-alpha, IL-1 beta and CXCL1/KC by zymosan was dependent on TLR2/MyD88 signaling. Investigating the mechanisms by which TNF-alpha, IL-1 beta and CXCL1/KC mediate joint hypernociception, joint administration of these cytokines produced mechanical hypernociception, and they act in an interdependent manner. In last instance, their hypernociceptive effects were dependent on the production of hypernociceptive mediators, prostaglandins and sympathetic amines. These results indicate that in zymosan-induced experimental arthritis, TLR2/MyD88 is involved in the cascade of events of joint hypernociception through a mechanism dependent on cytokines and chemokines production. Thus, TLR2/MyD88 signaling might be a target for the development of novel drugs to control pain in arthritis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukotriene B-4 (LTB4) mediates different inflammatory events such as neutrophil migration and pain. The present study addressed the mechanisms of LTB4-mediated joint inflammation-induced hypernociception. It was observed that zymosan-induced articular hypernociception and neutrophil migration were reduced dose-dependently by the pretreatment with MK886 (1-9 mg/kg; LT synthesis inhibitor) as well as in 5-lypoxygenase-deficient mice (5LO(-/-)) or by the selective antagonist of the LTB4 receptor (CP105696; 3 mg/kg). Histological analysis showed reduced zymosan-induced articular inflammatory damage in 5LO(-/-) mice. The hypernociceptive role of LTB4 was confirmed further by the demonstration that joint injection of LTB4 induces a dose (8.3, 25, and 75 ng)-dependent articular hypernociception. Furthermore, zymosan induced an increase in joint LTB4 production. Investigating the mechanism underlying LTB4 mediation of zymosan-induced hypernociception, LTB4-induced hypernociception was reduced by indomethacin (5 mg/kg), MK886 (3 mg/kg), celecoxib (10 mg/kg), antineutrophil antibody (100 mu g, two doses), and fucoidan (20 mg/kg) treatments as well as in 5LO(-/-) mice. The production of LTB4 induced by zymosan in the joint was reduced by the pretreatment with fucoidan or antineutrophil antibody as well as the production of PGE(2) induced by LTB4. Therefore, besides reinforcing the role of endogenous LTB4 as an important mediator of inflamed joint hypernociception, these results also suggested that the mechanism of LTB4-induced articular hypernociception depends on prostanoid and neutrophil recruitment. Furthermore, the results also demonstrated clearly that LTB4-induced hypernociception depends on the additional release of endogenous LTs. Concluding, targeting LTB4 synthesis/action might constitute useful therapeutic approaches to inhibit articular inflammatory hypernociception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the peripheral effect of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in albumin-induced arthritis in temporomandibular joint (TMJ) of rats. Antigen-induced arthritis (AIA) was generated in rats with methylated bovine serum albumin (mBSA) diluted in complete Freund׳s adjuvant. Pretreatment with an intra-articular injection of 15d-PGJ2 (100 ng/TMJ) before mBSA intra-articular injection (10 µg/TMJ) (challenge) in immunized rats significantly reduced the albumin-induced arthritis inflammation. The results demonstrated that 15d-PGJ2 was able to inhibit plasma extravasation, leukocyte migration and the release of inflammatory cytokines IL-6, IL-12, IL-18 and the chemokine CINC-1 in the TMJ tissues. In addition, 15d-PGJ2 was able to increase the expression of the anti-adhesive molecule CD55 and the anti-inflammatory cytokine IL-10. Taken together, it is possible to suggest that 15d-PGJ2 inhibit leukocyte infiltration and subsequently inflammatory process, through a shift in the balance of the pro- and anti-adhesive properties. Thus, 15d-PGJ2 might be used as a potential anti-inflammatory drug to treat arthritis-induced inflammation of the temporomandibular joint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the study: This study assessed the involvement of endogenous glucocorticoids (GCs) in the anti-arthritic properties of bee venom (BV) on antigen-induced arthritis (AIA) in rabbits. Materials and methods: BV (1.5-6 mu g/kg/day) was injected for 7 days before AIA induction, whereas the control group received sterile saline. The total and differential leukocyte count. PGE(2) levels in synovial fluid and synovial membrane cell infiltrate were evaluated. The contribution of GCs to BV action was assessed in rabbits treated with BV plus metyrapone, an inhibitor of GC synthesis, or RU-38 486, a steroid antagonist. Results: Treatment with BV (1.5 mu g/kg/day) reduced the leukocyte count and PGE2 level (18571 +/- 1909 cells/mm(3) and 0.49 +/- 0.05 ng/mL, respectively) as well as the cellular infiltrate compared with the control group (40968 +/- 5248 cells/mm(3) and 2.92 +/- 0.68 ng/mL, p < 0.05). The addition of metyrapone to BV treatment completely reversed the inhibition of AIA, whereas RU-38 486 was ineffective. Conclusion: Our data show that bee venom treatment prevents the development of antigen-induced arthritis in rabbits through the action of GCs. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic plants are able to express molecules with antigenic properties. In recent years, this has led the pharmaceutical industry to use plants as alternative systems for the production of recombinant proteins. Plant-produced recominant proteins can have important applications in therapeutics, such as in the treatment of rheumatoid arthritis (RA). In this study, the mycobacterial HSP65 protein expressed in tobacco plants was found to be effective as a treatment for adjuvant-induced arthritis (AIA). We cloned the hsp65 gene from Mycobacterium leprae into plasmid pCAMBIA 2301 under the control of the double 35S promoter from cauliflower mosaic virus. Agrobacterium tumefaciens bearing the pChsp65 plasmid was used to transform tobacco plants. Incorporation of the hsp65 gene was confirmed by PCR, reverse transcription-PCR, histochemistry, and western blot analyses in several transgenic lines of tobacco plants. Oral treatment of AIA rats with the HSP65 protein allowed them to recover body weight and joint inflammation was reduced. Our results suggest a synergistic effect between the HSP65 expressed protein and metabolites presents in tobacco plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of an extract from a helminth (Ascaris suum) in zymosan-induced arthritis (ZYA) or collagen-induced arthritis (CIA). Rats and mice, respectively, received 1 mg and 0.1 mg zymosan intra-articularly (i.a.). Test groups received an A. suum extract either per os (p.o.) or intraperitoneally (i.p.) 30 min prior to i.a. zymosan. Controls received saline. Hypernociception was measured using the articular incapacitation test. Cell influx, nitrite, and cytokine levels were assessed in joint exudates. The synovia and distal femoral extremities were used for histopathology. Cartilage damage was assessed through determining glycosaminoglycan (GAG) content. DBA/1J mice were subjected to CIA. The test group received A. suum extract i.p. 1 day after CIA became clinically detectable. Clinical severity and hypernociception were assessed daily. Neutrophil influx was determined using myeloperoxidase activity. The A. suum extract, either i.p. or p.o., significantly and dose-dependently inhibited cell influx and hypernociception in ZYA in addition to reducing GAG loss and ameliorating synovitis. The A. suum extract reduced i.a. levels of NO, interleukin-1 beta (IL-1 beta), and IL-10 but not tumor necrosis factor alpha (TNF-alpha) in rats subjected to ZYA while reducing i.a. IL-10, but not IL-1 beta or TNIT-alpha, levels in mice. Clinically, mice subjected to CIA treated with the A. suum extract had less severe arthritis. Hypernociception, myeloperoxidase activity, and synovitis severity were significantly reduced. These data show that a helminth extract given p.o. protects from arthritis severity in two classical arthritis models. This A. suum effect is species independent and functions orally and parenterally. The results show clinical and structural benefits when A. suum extract is given either prophylactically or therapeutically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Chemokine receptors CXCR1 and CXCR2 may mediate influx of neutrophils in models of acute and chronic inflammation. The potential benefits of oral administration of a CXCR1/2 inhibitor, DF 2162, in adjuvant-induced polyarthritis (AIA) were investigated. Experimental approach: A model of AIA in rats was used to compare the therapeutic effects of the treatment with DF2162, anti-TNF or anti-CINC-1 antibodies on joint inflammation and local production of cytokines and chemokines. Key results: DF2162 prevented chemotaxis of rat and human neutrophils induced by chemokines acting on CXCR1/2. DF2162 was orally bioavailable and metabolized to two major metabolites. Only metabolite 1 retained CXCR1/2 blocking activity. Treatment with DF2162 ( 15 mg kg(-1), twice daily) or metabolite 1, but not metabolite 2, starting on day 10 after arthritis induction diminished histological score, the increase in paw volume, neutrophil influx and local production of TNF, IL-1 beta, CCL2 and CCL5. The effects of DF2162 were similar to those of anti-TNF, and more effective than those of anti-CINC-1, antibodies. DF2162 prevented disease progression even when started 13 days after arthritis induction. Conclusions and implications: DF 2162, a novel orally-active non-competitive allosteric inhibitor of CXCR1 and CXCR2, significantly ameliorates AIA in rats, an effect quantitatively and qualitatively similar to those of anti-TNF antibody treatment. These findings highlight the contribution of CXCR2 in the pathophysiology of AIA and suggest that blockade of CXCR1/2 may be a valid therapeutic target for further studies aiming at the development of new drugs for treatment of rheumatoid arthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE We investigated the effect of the phosphodiesterase-5 inhibitor, tadalafil, on the acute hypernociception in rat models of arthritis. EXPERIMENTAL APPROACH Rats were treated with either an intra-articular injection of zymosan (1 mg) or surgical transection of the anterior cruciate ligament (as an osteoarthritis model). Controls received saline intra-articular or sham operation respectively. Joint pain was evaluated using the articular incapacitation test measured over 6 h following zymosan or between 4 and 7 days after anterior cruciate ligament transection. Cell counts, tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), and the chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured in joint exudates 6 h after zymosan. Groups received tadalafil (0.02-0.5 mg.kg(-1) per os) or saline 2 h after intra-articular zymosan. Other groups received the mu-opioid receptor antagonist naloxone or the cGMP inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) before tadalafil. KEY RESULTS Tadalafil dose-dependently inhibited hypernociception in zymosan and osteoarthritis models. In zymosan-induced arthritis, tadalafil significantly decreased cell influx and TNF-alpha release but did not alter IL-1 or CINC-1 levels. Pretreatment with ODQ but not with naloxone prevented the anti-inflammatory effects of tadalafil. CONCLUSIONS AND IMPLICATIONS Therapeutic oral administration of tadalafil provided analgesia mediated by guanylyl cyclase and was independent of the release of endogenous opioids. This effect of tadalafil was associated with a decrease in neutrophil influx and TNF-alpha release in inflamed joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IL-17 is an important cytokine in the physiopathology of rheumatoid arthritis (RA). However, its participation in the genesis of nociception during RA remains undetermined. In this study, we evaluated the role of IL-17 in the genesis of articular nociception in a model of antigen (mBSA)-induced arthritis. We found that mBSA challenge in the femur-tibial joint of immunized mice induced a dose-and time-dependent mechanical hypernociception. The local IL-17 concentration within the mBSA-injected joints increased significantly over time. Moreover, co-treatment of mBSA challenged mice with an antibody against IL-17 inhibited hypernociception and neutrophil recruitment. In agreement, intraarticular injection of IL-17 induced hypernociception and neutrophil migration, which were reduced by the pre-treatment with fucoidin, a leukocyte adhesion inhibitor. The hypernociceptive effect of IL-17 was also reduced in TNFR1(-/-) mice and by pre-treatment with infliximab (anti-TNF antibody), a CXCR1/2 antagonist or by an IL-1 receptor antagonist. Consistent with these findings, we found that IL-17 injection into joints increased the production of TNF-alpha, IL-1 beta and CXCL1/KC. Treatment with doxycycline (non-specific MMPs inhibitor), bosentan (ET(A)/ET(B) antagonist), indomethacin (COX inhibitor) or guanethidine (sympathetic blocker) inhibited IL-17-induced hypernociception. IL-17 injection also increased PGE(2) production, MMP-9 activity and COX-2, MMP-9 and PPET-1 mRNA expression in synovial membrane. These results suggest that IL-17 is a novel pro-nociceptive cytokine in mBSA-induced arthritis, whose effect depends on both neutrophil migration and various pro-inflammatory mediators, as TNF-alpha, IL-1 beta, CXCR1/2 chemokines ligands, MMPs, endothelins, prostaglandins and sympathetic amines. Therefore, it is reasonable to propose IL-17 targeting therapies to control this important RA symptom. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.