574 resultados para ZYGOTIC EMBRYOGENESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acca sellowiana (Berg.) Burr. is a native Myrtaceae from southern Brazil and Uruguay, now the subject of a domestication and breeding program. Biotechnological tools have been used to assist in this program. The establishment of a reliable protocol of somatic embryogenesis has been pursued, with a view to capturing and fixing genetic gains. The rationale behind this work relies on the fact that deepening comprehension of the general metabolism of zygotic embryogenesis may certainly improve the protocol for somatic embryogenesis. Thus, in the present work we studied the accumulation of protein, total sugars, starch, amino acids, polyamines (PAs), IAA and ABA, in different stages of A. sellowiana zygotic embryogenesis. Starch is the predominant storage compound during zygotic embryo development. Increased synthesis of amino acids in the cotyledonary stage, mainly of asparagine, was observed throughout development. Total free PAs showed increased synthesis, whereas total conjugated PAs were mainly observed in the early developmental stages. IAA decreased and ABA increased with the progression from early to late embryogenesis. Besides providing basic information on the morphophysiological and biochemical changes of zygotic embryogenesis, the results here obtained may provide adequate strategies towards the modulation of somatic embryogenesis in this species as well as in other woody angiosperms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Structural aspects of the zygotic embryogenesis of Acca sellowiana (O. Berg) Burret (Myrtaceae)). Acca sellowiana has anatropous, bitegmic and crassinucellate ovules. The outer and inner integuments are double-layered except in the micropyle, where they are composed of more layers; the micropyle is zig-zag shaped. The egg apparatus lies at the micropylar pole, and the zynergids present a conspicuous filiform apparatus. The antipodal cells are present in the chalazal region, persisting before the occurrence of double fertilization. The zygote is visible 21 days after pollination; nuclear endosperm is already present. The first mitotic division of the zygote occurs at 24(th) day. The globular, cordiform and torpedo embryo stages can be seen at 30, 45 and 60 days after pollination, respectively. The mature embryo characterized by the presence of a well-developed hypocotyl-radicular axis with two fleshy and folded cotyledons was observed 120 days after pollination. Endosperm is absent in the seeds, and the embryo has spiral form, characteristic of Myrtinae. The zygotic embryology studies of A. sellowiana indicate that this species has embryological characteristics which are in agreement with those reported for Myrtaceae (Myrteae, Myrtinae), and also broaden the knowledge about the sexual reproduction of this native species, whose commercial cultivation has been growing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21-24 days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24-30 days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amino acids play fundamental roles in plant morphogenesis. Among sources of organic nitrogen (N), glutamine has frequently been used during the establishment and maintenance of cell and tissue cultures. The aim of this study was analyse endogenous levels of glutamine during somatic and zygotic embryogenesis of Acca sellowiana (Feijoa or pineapple guava). The in vitro absorption of H-3-labelled glutamine was investigated. Zygotic embryos and embryogenic cultures (EC) were evaluated at 30 d and 70 d after explant inoculation onto the medium. Endogenous levels of glutamine were similar during zygotic and somatic embryogenesis, and showed a gradual decline until day-24 in culture. The highest rates of H-3-labelled glutamine uptake were observed during the first 2 h of incubation, resulting in values of 6.29 mu mol g(-1) fresh weight (FW) for zygotic embryos, 14.43 mu mol g(-1) FW for EC after 30 d, and 13.85 mu mol g(-1) FW for EC after 70 d. These results showed that the decreased levels of glutamine observed during the initial phase of development may be related to de novo protein synthesis and mobilisation during embryo maturation. The absorption of glutamine in the first 2 h of incubation also emphasises its involvement as an important source of N during morphogenesis of somatic and zygotic embryos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Somatic embryogenesis is an in vitro morphogenetic route in which isolated cells or a small group of somatic cells give rise to bipolar structures resembling zygotic embryos. Lipids, carbohydrates, and proteins are major compounds in plant and animal metabolism. Comparative analysis along different developmental stages of Acca sellowiana (Myrtaceae) zygotic and somatic embryos, revealed a progressive increase in levels of total lipids. A high degree of similarity could be found in the total lipids composition between A. sellowiana somatic and zygotic embryos. High lipid levels were found in zygotic embryos in the torpedo and cotyledonary stages, and these levels increased according to the progression in the developmental stages. Somatic embryos obtained through direct embryogenesis route showed higher levels of lipids than in indirect somatic embryogenesis. The compounds most frequently were linoleic acid (C18:2), palmitic (C16:0) and oleic (C18:1). These results indicate a high similarity degree of accumulation of total lipids, regardless of zygotic or somatic embryogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz.,ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semi-quantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The physiological and molecular processes controlling zygotic and somatic embryo development in angiosperms are mediated by a hierarchically organized program of gene expression. Despite the overwhelming information available about the molecular control of the embryogenic processes in angiosperms, little is known about these processes in gymnosperms. Here we describe the cloning and characterization of the expression pattern of the Araucaria angustifolia putative homolog of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene family member, designated as AaSERK1. The Araucaria AaSERK1 gene encodes a leucine-rich repeat receptor-like kinase showing significant similarity to angiosperm homologs of SERK1, known to be involved in early somatic and zygotic embryogenesis. Accordingly, RT-PCR results showed that AaSERK1 is preferentially expressed in Araucaria embryogenic cell cultures. Additionally, in situ hybridization results showed that AaSERK1 transcripts initially accumulate in groups of cells at the periphery of the embryogenic calli and then are restricted to the developing embryo proper. Our results indicate that AaSERK1 might have a role during somatic embryogenesis in Araucaria, suggesting a potentially conserved mechanism, involving SERK-related leucine-rich repeat receptor-like kinases, in the embryogenic processes among all seed plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carrot (Daucus carota) extracellular protein 3 (EP3) class IV endochitinases were previously identified based on their ability to rescue somatic embryos of the temperature-sensitive cell line ts11. Whole-mount in situ hybridization revealed that a subset of the morphologically distinguishable cell types in embryogenic and nonembryogenic suspension cultures, including ts11, express EP3 genes. No expression was found in somatic embryos. In carrot plants EP3 genes are expressed in the inner integumentary cells of young fruits and in a specific subset of cells located in the middle of the endosperm of mature seeds. No expression was found in zygotic embryos. These results support the hypothesis that the EP3 endochitinase has a “nursing” function during zygotic embryogenesis and that this function can be mimicked by suspension cells during somatic embryogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct somatic embryogenesis from isolated intact as well as broken zygotic embryos and in vitro plantlets of nutmeg (Myristica fragrans Houtt.) was obtained. Enhanced embryogenic response was associated with broken zygotic embryos. Activated charcoal and light were the critical factors for induction of somatic embryogenesis in nutmeg. Histological evaluation revealed the presence of globular and cotyledonary stages. The somatic embryos underwent partial germination after a six-month lag period. A wide range of abnormal embryos were observed. The somatic embryos synthesised chlorophyll, exhibited phenylalanine ammonia lyase activity, synthesised phenolics, and could serve as a stable source of secondary metabolites of nutmeg which are commercially important.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Midkine (Mdk) genes have been revealed to have different expression patterns in vertebrates and therefore, additional studies on Mdk expression patterns are required in more species. In this study, CagMdkb has been cloned and characterized from a SMART cDNA library of 10-somite stage embryos of Carassius auratus gibelio. Its full length cDNA is 1091 bp and encodes a sequence of 147 amino acids, which shows 97.3% identity to zebrafish Mdkb on the amino acid level. RT-PCR analysis reveals that CagMdkb is first transcribed in gastrula embryos and maintains a relatively stable expression level during subsequent embryogenesis. Western blot analysis reveals a 19 kDa maternal CagMdkb protein band and the zygotic CagMdkb protein is expressed from gastrula stage. At around 10 somite stage, the 19 kDa CagMdkb is processed to another protein band of about 17 kDa, which might be the secreted form with the 21-residue signal peptide removed. With immunofluorescence analysis, maternal CagMdkb protein was found to be localized in each blastamere cell of early embryos. The zygotic CagMdkb positive fluorescence signal was detected from a pair of large neurons at 18-somite stage. At the later stages, CagMdkb protein was also extended to numerous small neurons in the forebrain, midbrain and hindbrain, as well as to nerve fibers in the spinal cord. Co-localization with 3A10 antibody revealed CagMdkb immunoreactivity on developing Mauthner neurons, a member of reticulospinal neurons. In addition, ectopic expression of CagMdkb in early embryos of gibel carp and zebrafish suppressed head formation and CagMdkb function was found to depend on secretory activity. All these findings indicate that CagMdkb plays an important role in neural development during gibel carp embryogenesis and there is functional conservation of Mdkb in fish head formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatic embryos were induced from scutellar callus of immature zygotic embryos of T aestivum cv. Chinese Spring. Observations on precociously germinating somatic embryos revealed that: (i) In the initial stages the coleoptile is split, exposes the shoot apex and forms a green trichomatous leafy structure. In the germinating zygotic embryo, the coleoptile is tubular, (ii) Unlike what has been inferred earlier the leafy structure is the coleoptile and not the scutellum, (iii) Bipolarity of the embryoid is established later when root develops at the basal end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coconut, Cocos nucifera L. is a major plantation crop, which ensures income for millions of people in the tropical region. Detailed molecular studies on zygotic embryo development would provide valuable clues for the identification of molecular markers to improve somatic embryogenesis. Since there is no ongoing genome project for this species, coconut expressed sequence tags (EST) would be an interesting technique to identify important coconut embryo specific genes as well as other functional genes in different biochemical pathways. The goal of this study was to analyse the ESTs by examining the transcriptome data of the different embryo tissue types together with one somatic tissue. Here, four cDNA libraries from immature embryo, mature embryo, microspore derived embryo and mature leaves were constructed. cDNA was sequenced by the Roche-454 GS-FLX system and assembled into 32621 putative unigenes and 155017 singletons. Of these unigenes, 18651 had significant sequence similarities to non-redundant protein database, from which 16153 were assigned to one or more gene ontology categories. Homologue genes, which are responsible for embryo development such as chitinase, beta-1,3-glucanase, ATP synthase CF0 subunit, thaumatin-like protein and metallothionein-like protein were identified among the embryo EST collection. Of the unigenes, 6694 were mapped into 139 KEGG pathways including carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism. This collection of 454-derived EST data generated from different tissue types provides a significant resource for genome wide studies and gene discovery of coconut, a non-model species.