992 resultados para ZOOPLANKTON DISTRIBUTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative limnological study was carried out to present a snapshot of crustacean zooplankton communities and their relations to environmental factors to test whether there is a consistent relationship between crustacean biomass and trophic indicators among lake groups with similar trophic conditions. The study lakes showed a wide range of trophic status, with total phosphorus (TP) ranging from 0.008 to 1.448mgL(-1), and chlorophyll a from 0.7 to 146.1 mu g L-1, respectively. About 38 species of Crustacea were found, of which Cladocera were represented by 25 taxa (20 genera), and Copepoda by 13 taxa (I I genera). The most common and dominant species were Bosmina coregoni, Moina micrura, Diaphanosoma brachyurum, Cyclops vicinus, Thermocyclops taihokuensis, Mesocyclops notius and Sinocalanus dorrii. Daphnia was rare in abundance. Canonical correspondence analysis showed that except for four species (D. hyalina, S. dorrii, C. vicinus and M. micrura), almost all the dominant species had the same preference for environmental factors. Temperature, predatory cyclopoids and planktivorous fishes seem to be the key factors determining species distribution. TP was a relatively better trophic indicator than chlorophyll a to predict crustacean biomass. Within the three groups of lakes, however, there was no consistent relationship between crustacean biomass and trophic indicators. The possible reason might be that top-down and bottom-up control on crustaceans vary with lake trophic state. The lack of significant negative correlation between crustacean biomass and chlorophyll a suggests that there was little control of phytoplankton biomass by macrozooplankton in these shallow subtropical lakes. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (<5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv, shipboard ADCP, 75kHz) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified to be followed by zooplankton in response to the eddy OMZ: i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy i), ii) and iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La recherche porte sur les patrons de distribution longitudinale (amont-aval) et transversale (rive nord - rive sud) des communautés de crustacés planctoniques qui ont été analysés le long du fleuve Saint-Laurent entre le lac Saint-François et la zone de transition estuarienne, à deux hydropériodes en mai (crue) et en août (étiage). Les données zooplanctoniques et environnementales ont été récoltées à 52 stations réparties sur 16 transects transversaux en 2006. Au chapitre 1, nous présentons les principaux modèles écosystémiques en rivière, une synthèse des facteurs influençant le zooplancton en rivières et les objectifs et hypothèses de recherche. Au chapitre 2, nous décrivons la structure des communautés de zooplancton dans trois zones biogéographiques du fleuve et 6 habitats longitudinaux, ainsi que les relations entre la structure du zooplancton et la distribution spatiale des masses d’eau et les variables environnementales. Au chapitre 3, nous réalisons une partition de la variation des variables spatiales AEM (basées sur la distribution des masses d’eau) et des variables environnementales pour évaluer quelle part de la variation du zooplancton est expliquée par les processus hydrologiques (variables AEM) et les conditions locales (facteurs environnementaux). Le gradient salinité-conductivité relié à la discontinuité fleuve-estuaire a déterminé la distribution à grande échelle du zooplancton. Dans les zones fluviales, la distribution du zooplancton est davantage influencée par la distribution des masses d’eau que par les facteurs environnementaux locaux. La distribution des masses d’eau explique une plus grande partie de la variation dans la distribution du zooplancton en août qu’en mai.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two recently developed instruments, the Laser Optical Plankton Counter (LOPC) and the Zooscan, have been applied to study zooplankton biomass size spectra in tropical and subtropical marine ecosystems off Brazil. Both technologies rely on optical measurements of particles and may potentially be used in zooplankton monitoring programs. Vertical profiles of the LOPC installed in a 200 mu m ring net have been obtained from diverse environmental settings ranging from turbid and nearshore waters to oligotrophic open ocean conditions. Net samples were analyzed on the Zooscan and counted under a microscope. Particle biovolume in the study area estimated with the LOPC correlated with plankton displacement volume from the net samples, but there was no significant relationship between total areal zooplankton biomass determined with LOPC and the Zooscan. Apparently, normalized biomass size spectra (NBSS) of LOPC and Zooscan overlapped for particles in the size range of 500 to 1500 mu m in equivalent spherical diameter (ESD), especially at open ocean stations. However, the distribution of particles into five size classes was statistically different between both instruments at 24 of 28 stations. The disparities arise from unequal flow estimates, from different sampling efficiencies of LOPC tunnel and net for large and small particles, and possibly from the interference of non-zooplankton material in the LOPC signal. Ecosystem properties and technical differences therefore limit the direct comparability of the NBSS slopes obtained with both instruments during this study, and their results should be regarded as complementary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.