10 resultados para ZIRCONOCENE-METHYLALUMINOXANE
Resumo:
This work describes the synthesis and characterisation of Ni(II) complexes of the following neutral bidentate nitrogen ligands containing pyrazole (pz), pyrimidine (pm) and pyridine (py) aromatic rings: 2-pyrazol-1-yl-pyrimidine (pzpm), 2-(4-methyl-pyrazol-1-yl)-pyrimidine (4-Mepzpm), 2-(4-bromo-pyrazol-1-yl)-pyrimidine (4-Brpzpm), 2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidine (pz*pm), 2-pyrazol-1-yl-pyridine (pzpy) and bis(3,5-dimethylpyrazol-1-yl)phenylmethane (bpz*mph). The complexes [NiBr2(pzpm)] (1), [NiBr2(4-Mepzpm)] (2), [NiBr2(4-Brpzpm)] (3), [NiBr2(pz*pm)] (4), [NiBr2(pzpy)] (5) and [NiBr2(bpz*mph)] (6) were tested as catalysts for ethylene polymerisation, in the presence of the cocatalysts methylaluminoxane (MAO) or diethylaluminium chloride (AlEt2Cl), the catalyst systems 1-3/MAO showing moderate to high activities up to the temperature of 20 °C only in the presence of MAO, whereas 4-6/MAO revealed to be inactive. Other related Pd(II) complexes, already reported in previous works, such as [PdClMe(pzpm)], [PdClMe(pz*pm)], [PdClMe(pzpy)] and [PdClMe(bpz*mph)], also showed to be inactive in the polymerisation of ethylene, when activated by MAO or AlEt2Cl. Selected samples of polyethylene products were characterised by GPC/SEC, 1H and 13C NMR and DSC, showing to be low molecular weight polymers with Mn values ranging from ca. 550 to 1500 g mol−1 and unusually low dispersities of 1.2–1.7, with total branching degrees generally varying between 2 and 12%, melting temperatures from 40 to 120 °C and crystallinities from 40 to 70%.
Resumo:
In this work we report the synthesis of some organolanthanide compounds which were identified as LnCl2Cp(PzA)2, Ln = Nd, Sm, Eu and Tb, Cp = cyclopentadienyl and PzA = pirazinamide, by elemental analyses, complexometric titration with EDTA, thermal analyses and IR spectra. Thermal analysis and infrared spectra indicated that the coordination of the pyrazinamide to the lanthanide ions was made by the O atom of the carbonyl group and by one or both N atoms of the pyrazinamide ring. This class of compound showed catalytic activity of ca. 4.0 to 6.4 kgPE molLn-1 h-1 bar-1, in ethylene polymerization, using methylaluminoxane as cocatalyst. The resulting polyethylene presented low crystallinity (20%).
Resumo:
This review deals with the homo- and copolymerization of styrene with nickel catalysts. The catalytic activity, polymer stereoregularity, polymer molecular weight and polydispersity are dependent upon nickel ligands and reaction parameters. Catalysts supported on silica, treated with methylaluminoxane (MAO), have shown higher stereospecificity and activity compared to homogeneous ones. The influence of these parameters is discussed focusing on the elucidation of some aspects of the polymerization mechanism.
Resumo:
In an attempt to improve the performance of organolanthanide catalysts we investigated the use of the industrially important cocatalyst methylaluminoxane (MAO) to activate organolanthanide compounds in olefin polymerization. The catalytic systems LnBrCp2(THF)2/MAO (Cp=cyclopentadienyl) and LnBrCp*2THF/MAO (Cp*= pentamethylcyclopentadienyl), Ln=Pr and Yb, were active in styrene polymerization but inactive in ethylene and propylene polymerization. These systems produced atactic polystyrene with conversions of up to 8.2% (PrBrCp*2THF, Al/Ln=200, T=80ºC, t=4 h) in toluene. In the absence of solvent, the conversion is 26.0% (1.5 h) and the molar mass of the atactic polystyrene is almost ten times higher (43 kg/mol).
Resumo:
This paper evaluates the adsorption capacity of zirconocene-based silica materials in the pre-concentration of antimicrobians (tetracycline, sulfamethoxazole and trimethoprim) in aqueous medium. These materials were prepared by grafting the zirconocene onto silicas pre-treated at different temperatures. The retention capacity of these materials was evaluated by off line SPE and HPLC-UV and the proposed methodology was validated in ultrapure, tap and river water. The recovery for tetracycline was 72% (in the solid phase A) and, for sulfamethoxazole and trimethoprim was 68 and 95% in the commercial C18, respectively. The target antimicrobians were not detected in the Arroio Dilúvio (Porto Alegre - RS).
Resumo:
The immobilization of soluble catalyst {Tp(Ms)}TiCl3 (Tp(Ms*)HB(3-mesityl-pyrazolyl)(2)(5-mesityl-pyrazolyl)(-)) on silica and MAO-modified silicas containing 4.0, 8.0 and 23.0 wt.% Al/SiO2 yields active supported catalysts for ethylene polymerization. Among the supported catalysts studied by XRF spectroscopy, higher titanium content was obtained using MAO-modified silica containing 8.0 wt.% Al/SiO2 as support. For the ethylene polymerization reactions carried out in hexane at 60degreesC using a combination of triisobutylaluminum (TiBA) and methylaluminoxane (MAO) (1:1), the activities varied between 24.4 and 113.5 kg of PE/mol [Ti] h. The highest activity is reached using MAO-modified silica containing 4.0 wt.% Al/SiO2 as support. The viscosity-average molecular weights ((M) over bar (v)) of the PE's produced with the supported catalysts varying from 1.44 to 9.94 x 10(5) g/mol with melting temperatures in the range of 125-140degreesC. The use of other Lewis acid cocatalysts, including TiBA, diethylaluminium chloride (DEAC), and trimethylaluminum (TMA) resulted also in the formation of active catalysts for ethylene polymerization. However, the activities are lower than that one using a combination of TiBA and MAO. The viscosity-average molecular weights (R,) of PE's are influenced by varying the cocatalysts as well as the Al/Ti molar ratio. The supported catalyst generated in situ under ethylene atmosphere is roughly four times more active than supported one containing 4.0 wt.% Al/SiO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
O estudo de compostos organolantanídeos consiste em um dos campos de maior interesse dentro da química organometálica, principalmente devido ao uso potencial como precursores ou catalisadores em reações de hidrogenação, hidroformilação, carbonilação, oxidação e principalmente polimerização de olefinas. Este interesse tem levado diversos grupos de pesquisa a sintetizarem compostos utilizando o ânion ciclopentadienil e seus derivados ligados a íons lantanídeos (III). O presente trabalho tem como objetivo contribuir para a aplicação desses compostos organolantanídeos como catalisadores em reações de polimerização de olefinas. O trabalho envolveu uma etapa de síntese e caracterização de duas classes de compostos organolantanídeos Ln(MS)2Cp*(Ln = Tb e Yb), e Ln(MS)2Cp*PzA (Ln = Sm, Tb e Yb) e uma etapa de estudo da atividade catalítica desses compostos frente a reações de polimerização de etileno, propileno e estireno, utilizando metilaluminoxano como co-catalisador e a caracterização dos polímeros formados. Os compostos sintetizados apresentaram atividade catalítica apenas para polimerização de estireno. O polímero formado, independente do composto organolantanídeo utilizado, foi caracterizado como poliestireno principalmente atático, indicando que a polimerização não é estereoespecífica e apresentou massa molar da ordem de 104 g/mol.
Resumo:
New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.
Resumo:
A new titanium catalyst easily synthesized from ethylmaltol bidentate chelator ligand was studied in homogeneous and heterogeneous ethylene polymerization. The dichlorobis(3-hydroxy-2-ethyl-4-pyrone)titanium(IV) complex was characterized by 1H and 13C NMR (nuclear magnetic resonance), UV-Vis and elemental analysis. Theoretical study by density functional theory (DFT) showed that the complex chlorines exhibit cis configuration, which is important for the activity in olefin polymerization. The complex was supported by two methods, direct impregnation or methylaluminoxane (MAO) pre-treatment, in five mesoporous supports: MCM-41 (micro and nano), SBA-15 and also the corresponding modified Al species. All the catalytic systems were active in ethylene polymerization and the catalytic activity was strongly influenced by the method of immobilization of the catalyst and the type of support.
Resumo:
A hafnocene catalyst combined with methylaluminoxane (MAO) has been used as catalytic complex for the preparation of a set of polyethylene homopolymers by in situ polymerization under homogenous conditions and of different nanocomposites with mesoporous SBA- 15 particles, the latter playing the dual role of catalyst support and nanofiller. Distinct immobilization approaches have been explored for obtainment of these nanocomposites. Moreover, catalytic features, thermal stability, melting and crystallization transitions and mechanical behavior have been evaluated for those materials.