963 resultados para ZINC-OXIDE-EUGENOL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of microorganisms in dental structures with experimentally induced necrosis was evaluated. The materials were tested to evaluate their antimicrobial activity and tissue repair efficacy. Four dogs were used in this experiment, with a total of 64 roots of premolar teeth, divided into three groups. The root canals of Group I were filled with gutta-percha and zinc oxide/eugenol cement; Group II were filled with calcium hydroxide, and Group III were not filled. All animals were clinically and radiographically examined 15 days after surgery andthen again every subsequent 15 days until 120 days, when the teeth were extracted en bloc.Histopathological analysis showed inflammatory infiltration, cement and bone resorption andnecrotic tissue in the apical delta in different proportions. Histomicrobiological analysis showedthe presence of microorganisms inside the teeth structures, with different concentrationsaccording to the treatment used. There was statistical significance between the groups(p>0.05). Gutta-percha with zinc oxide/eugenol demonstrated good antimicrobial activity;calcium hydroxide was not efficient. The conclusion of this study is that gutta-percha withzinc oxide/eugenol is the better protocol for filling root canals in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object of the study was to compare two commercial root canal sealers: Ketac-Endo (a glass ionomer cement) and Fill Canal (a zinc oxide-eugenol cement). A total of 34 root canals from dog premolars with vital pulps were used. After instrumentation, the root canals were sealed with Ketac-Endo and Fill Canal cements using gutta-percha and a lateral condensation technique. After 270 days the animals were sacrificed with an anesthetic overdose and the maxillae and mandibles were removed and fixed in formalin for 48 h. After routine histological processing the sections were stained with hematoxylin-eosin and Mallory trichrome stains. Microscopic analysis revealed that Ketac-Endo cement presented better results than Fill Canal cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to compare the microbial leakage of mineral trioxide aggregate (MTA), Portland cement (PC), Sealapex and zinc oxide-eugenol (ZOE) as root-end filling materials.Study design: An in vitro microbial leakage test (MLT) with a split chamber was used in this study. A mixture of facultative bacteria and one yeast (S. aureus + E. faecalis + P. aeruginosa + B. subtilis + C. albicans) was placed in the upper chamber and it could only reach the lower chamber containing Brain Heart Infusion broth by way of leakage through the root-end filling. Microbial leakage was observed daily for 60 days. Sixty maxillary anterior human teeth were randomly assigned to different groups - MTA and PC (gray and white), Sealapex + zinc oxide and ZOE, control groups and subgroups to evaluate the influence of EDTA for smear layer removal. These materials were further evaluated by an agar diffusion test (ADT) to verify their antimicrobial efficacy. Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney test.Results: In the MLT, Sealapex + zinc oxide and ZOE did not show evidence of microbial leakage over the 60-day experimental period. The other materials showed leakage from the 15th day. The presence of smear layer influenced microbial leakage. Microbial inhibition zones were not observed in all samples tested by ADT.Conclusion: Sealapex + zinc oxide and ZOE did not show microbial leakage over the experimental period, whereas it was verified within 15 to 45 days in MTA and Portland cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate in vitro the antimicrobial activity of glass ionomer (GIC) and zinc oxide-eugenol (ZOE) cements against Candida albicans. Standardized GIC and ZOE specimens were maintained in contact with C. albicans suspension (1 x 10(6) cells/ml) at 37 degrees C for 24 h, 48 h or 7 days. A control group without any testing cement was included. After the incubation period, aliquots of 0.1 ml were plated on Sabouraud's agar, and then the number of colonies was counted. The results were expressed as values of logarithms of colony-forming units per milliliter (log CFU/mL) and were analyzed statistically by Kruskal-Wallis ANOVA. After 48 h of incubation, the ZOE group presented no growth of C. albicans. GIC and control groups presented similar mean values at all tested periods. According to the results obtained, it could be concluded that, under the experimental conditions, ZOE cement was more effective in vitro against C. albicans than GIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide–eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H3PO4) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg−1 of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H3PO4 or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated in vitro the antibacterial activity of 4 root canal filling materials for primary teeth - zinc oxide and eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO), Sealapex sealer and EndoREZ sealer - against 5 bacterial strains commonly found in endodontic infections (Kocuria rhizophila, Enterococcus faecalis, Streptococcus mutans, Escherichia coli and Staphylococcus aureus) using the agar diffusion test (agar-well technique). Calen paste, 1% chlorhexidine digluconate (CHX) and distilled water served as controls. Seven wells per dish were made at equidistant points and immediately filled with the test and control materials. After incubation of the plates at 37oC for 24 h, the diameter of the zones of bacterial growth inhibition produced around the wells was measured (in mm) with a digital caliper under reflected light. Data were analyzed statistically by analysis of variance and Tukey's post-hoc test (?=0.05). There were statistically significant differences (p<0.0001) among the zones of bacterial growth inhibition produced by the different materials against all target microorganisms. K. rhizophila was inhibited more effectively (p<0.05) by ZOE, while Calen/ZO had its highest antibacterial activity against E. faecalis (p<0.05). S. mutans was inhibited by Calen/ZO, Sealapex and ZOE in the same intensity (p>0.05). E. coli was inhibited more effectively (p<0.05) by ZOE, followed by Calen/ZO and Sealapex. Calen/ZO and ZOE were equally effective (p>0.05) against S. aureus, while Sealapex had the lowest antibacterial efficacy (p<0.05) against this microorganism. EndoREZ presented antibacterial activity only against K. rhizophila and S. aureus. The Calen paste and Calen/ZO produced larger zones of inhibition than 1% CHX when the marker microorganism was E faecalis. In conclusion, the in vitro antibacterial activity of the 4 root canal filling materials for primary teeth against bacterial strains commonly found in endodontic infections can be presented in a decreasing order of efficacy as follows: ZOE>Calen/ZO>Sealapex>EndoREZ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: This study evaluated in vitro the influence of an eugenol-based sealer (EndoFill) on the retention of stainless steel prefabricated posts cemented with zinc phosphate and resin-based (Panavia F) cements after different periods of root canal obturation, using the pull-out test. MATERIAL AND METHODS: Sixty upper canines were decoronated and the roots were embedded in resin blocks. The specimens were distributed into 3 groups, according to the period elapsed between canal obturation and post cementation: Group I - immediately; Group II - 72 h and Group III - 4 months. The groups were subdivided according to the type of cement used for post cementation: A - zinc phosphate and B - Panavia F. Following the experimental periods, specimens were subjected to pullout test in an Instron machine with application of tensile force at a crosshead speed of 0.5 mm/min until post dislodgement. The maximum forces required for post removal were recorded (kN) and means were subjected to statistical analysis by 2-way ANOVA and Tukey-Kramer test (α=0.001) RESULTS: There were statistically significant differences (p<0.01) between the posts cemented with zinc phosphate cement (0.2112 kN) and Panavia F (0.0501 kN). However, no statistically significant differences (p>0.05) were found between the three post cementation periods, regardless of the cement. CONCLUSIONS: It was concluded that the eugenol-based sealer influenced the tensile strength of the posts cemented with the resin cement, but had no influence on the time waited between root canal obturation and post space preparation/post cementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Journal of Applied Physics, Vol. 96, nº3

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias con orientación en Química de los Materiales) UANL, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical emission spectroscopic studies were carried out on the plasma produced by ablation of zinc oxide target using the third harmonic 355 nm of Q-switched Nd:YAG laser, in vacuum and at three different ambient gas oxygen pressures. The spatial variations of electron density Ne and electron temperature Te were studied up to a distance of 20 mm from the target surface. The kinematics of the emitted particles and the expansion of the plume edge are discussed. The optimum conditions favorable for the formation of high quality zinc oxide thin films are thereby suggested.