969 resultados para ZERO-RANGE PROCESS
Resumo:
The interaction of the low-lying pseudoscalar mesons with the ground-state baryons in the charm sector is studied within a coupled-channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudoscalar mesons off the ground-state baryons are obtained by solving the Lippmann-Schwinger equation. We analyze in detail the effects of going beyond the t=0 approximation. Our model predicts the dynamical generation of several open-charm baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.
Resumo:
We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two successive tetramer states, is revealed by considering a renormalized zero-range two-body interaction in bound state of four identical bosons. The tetramer energy spectrum is obtained by adding a boson to an Efimov bound state with energy B-3 in the unitary limit (for zero two-body binding energy or infinite two-body scattering length). Each excited N-th tetramer energy B-4((N)) is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio B-4((N))/B-3 = 4.6, which does not depend on N. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Resumo:
The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances, where deviations of experimental values from universal model predictions are associated with effective range corrections. The effective range correction is extracted with a weighted average given by 3.9±0.8R vdW, where RvdW is the van der Waals length scale, which is consistent with the van der Waals potential tail for the Cs2 system. The method can be generally applied to other cold atom experimental setups to determine the contribution of the effective range to the tetramer dissociation position. © 2013 American Physical Society.
Resumo:
The universal properties of weakly-bound tetramers close to the scaling limit are investigated by solving a subtracted set of Faddeev-Yakubovsky (FY) equations for identical bosons with a zero-range interaction. The solution demands a four-body scale independent of the trimer properties. Furthermore, the effect of a finite effective range is introduced in the FY equations, which we show produces results that are distinct from the scale variation. In particular range effects to two universal scaling functions for the tetramers are investigated. The correlation between successive tetramer energies corresponding to states within two Efimov trimer energies, proposed before and studied close to the unitary limit; and the correlation between the position of the four-atom recombination peaks. In this case, we found a shift in the scaling function due to the range, which can be associated to the shift of the data found for caesium atoms, with respect to zero-range calculations, due to a nonvanishing range in the actual experimental setups. © 2013 Springer-Verlag Wien.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the framework of a finite-range density-functional theory, we compute the response of 4HeN clusters doped with a rare-gas molecule. For this purpose, the mean field for the 4He atoms, their wave functions and effective quasiparticle interaction, are self-consistently calculated for a variety of particle numbers in the cluster. The response function is then evaluated for several multipolarities in each drop and the collective states are consequently located from the peaks of the strength function. The spectra of pure droplets approach those previously extracted with a similar algorithm resorting to a zero-range density functional. The spectra of doped clusters are sensitive to the presence of the impurity and are worth a future systematic investigation.
Resumo:
The monopole (L=0) and quadrupole (L=2) strength distributions in normal 3He clusters are calculated within the random-phase approximation. We use a phenomenological, zero-range 3-3He interaction to generate the Hartree-Fock single-particle spectrum and the residual particle-hole interaction. The evolution of the collective modes with the number of atoms in the cluster is discussed.
Resumo:
We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.
Resumo:
Cette thèse est composée de trois articles en économie des ressources naturelles non-renouvelables. Nous considérons tour à tour les questions suivantes : le prix in-situ des ressources naturelles non-renouvelables ; le taux d’extraction optimal et le prix des res- sources non-renouvelables et durables. Dans le premier article, nous estimons le prix in-situ des ressources naturelles non-renouvelables en utilisant les données sur le coût moyen d’extraction pour obtenir une approximation du coût marginal. En utilisant la Méthode des Moments Généralisés, une dynamique du prix de marché derivée des conditions d’optimalité du modèle d’Hotelling est estimée avec des données de panel de 14 ressources naturelles non-renouvelables. Nous trouvons des résultats qui tendent à soutenir le modèle. Premièrement, le modèle d’Hotelling exhibe un bon pouvoir explicatif du prix de marché observé. Deuxièmement, bien que le prix estimé présente un changement structurel dans le temps, ceci semble n’avoir aucun impact significatif sur le pouvoir explicatif du modèle. Troisièmement, on ne peut pas rejeter l’hypothèse que le coût marginal d’extraction puisse être approximé par les données sur le coût moyen. Quatrièmement, le prix in-situ estimé en prenant en compte les changements structurels décroît ou exhibe une forme en U inversé dans le temps et semble être corrélé positivement avec le prix de marché. Cinquièmement, pour neuf des quatorze ressources, la différence entre le prix in-situ estimé avec changements structurels et celui estimé en négligeant les changements structurels est un processus de moyenne nulle. Dans le deuxième article, nous testons l’existence d’un équilibre dans lequel le taux d’extraction optimal des ressources non-renouvelables est linéaire par rapport au stock de ressource en terre. Tout d’abord, nous considérons un modèle d’Hotelling avec une fonction de demande variant dans le temps caractérisée par une élasticité prix constante et une fonction de coût d’extraction variant dans le temps caractérisée par des élasticités constantes par rapport au taux d’extraction et au stock de ressource. Ensuite, nous mon- trons qu’il existe un équilibre dans lequel le taux d’extraction optimal est proportionnel au stock de ressource si et seulement si le taux d’actualisation et les paramètres des fonctions de demande et de coût d’extraction satisfont une relation bien précise. Enfin, nous utilisons les données de panel de quatorze ressources non-renouvelables pour vérifier empiriquement cette relation. Dans le cas où les paramètres du modèle sont supposés invariants dans le temps, nous trouvons qu’on ne peut rejeter la relation que pour six des quatorze ressources. Cependant, ce résultat change lorsque nous prenons en compte le changement structurel dans le temps des prix des ressources. En fait, dans ce cas nous trouvons que la relation est rejetée pour toutes les quatorze ressources. Dans le troisième article, nous étudions l’évolution du prix d’une ressource naturelle non-renouvelable dans le cas où cette ressource est durable, c’est-à-dire qu’une fois extraite elle devient un actif productif détenu hors terre. On emprunte à la théorie de la détermination du prix des actifs pour ce faire. Le choix de portefeuille porte alors sur les actifs suivant : un stock de ressource non-renouvelable détenu en terre, qui ne procure aucun service productif ; un stock de ressource détenu hors terre, qui procure un flux de services productifs ; un stock d’un bien composite, qui peut être détenu soit sous forme de capital productif, soit sous forme d’une obligation dont le rendement est donné. Les productivités du secteur de production du bien composite et du secteur de l’extraction de la ressource évoluent de façon stochastique. On montre que la prédiction que l’on peut tirer quant au sentier de prix de la ressource diffère considérablement de celle qui découle de la règle d’Hotelling élémentaire et qu’aucune prédiction non ambiguë quant au comportement du sentier de prix ne peut être obtenue de façon analytique.
Resumo:
A systematic study of the root-mean-square distance between the constituents of weakly-bound nuclei consisting of two halo neutrons and a core is performed using a renormalized zero-range model. The radii are obtained from a universal scaling function that depends on the mass ratio of the neutron and the core, as well as on the nature of the subsystems, bound or virtual. Our calculations are qualitatively consistent with recent data for the neutron-neutron root-mean-square distance in the halo of Li-11 and Be-14 nuclei. (C) 2004 Published by Elsevier B.V.
Resumo:
The structure of three-body halo nuclei formed by two neutrons and a core (nnc) is studied using zero-range interactions. The halo wave function can be completely parameterized only by the s-wave scattering lengths and two-neutron separation energy. The sizes and the neutron-neutron correlation function of Li-11 and Be-14 are calculated and compared to experimental data. A general classification scheme for three-body halos with two identical particles is discussed as well as the critical conditions to allow excited Efimov states.
Resumo:
The classification of large halos formed by two identical particles and a core is systematically addressed according to interparticle distances. The root-mean-square distances between the constituents are described by universal scaling functions obtained from a renormalized zero-range model. Applications for halo nuclei, Li-11 and Be-14, and for atomicn He-4(3) are briefly discussed. The generalization to four-body systems is proposed.