1000 resultados para Yukawa Potential


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colloidal suspensions made up of oppositely charged particles have been shown to self-assemble into substitutionally ordered superlattices. For a given colloidal suspension, the structure of the superlattice formed from self-assembly depends on its composition, charges on the particles, and charge screening. In this study we have computed the pressure-composition phase diagrams of colloidal suspensions made up of binary mixtures of equal sized and oppositely charged particles interacting via hard core Yukawa potential for varying values of charge screening and charge asymmetry. The systems are studied under conditions where the thermal energy is equal or greater in magnitude to the contact energy of the particles and the Debye screening length is smaller than the size of the particles. Our studies show that charge asymmetry has a significant effect on the ability of colloidal suspensions to form substitutionally ordered superlattices. Slight deviations of the charges from the stoichiometric ratio are found to drastically reduce the thermodynamic stability of substitutionally ordered superlattices. These studies also show that for equal-sized particles, there is an optimum amount of charge screening that favors the formation of substitutionally ordered superlattices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3700226]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystal formation process of charged colloidal particles is investigated using Brownian dynamics (BD) simulations. The particles are assumed to interact with the pair-additive repulsive Yukawa potential. The time evolution of crystallization process and the crystal structure during the simulation are characterized by means of the radial distribution functions (RDF) and mean square displacement (MSD). The simulations show that when the interaction is featured with long-range, particles can spontaneously assemble into body-centered-cubic (BCC) arrays at relatively low particle number density. When the interaction is short-ranged, with increasing the number density particles become trapped into a stagnant disordered configuration before the crystallization could be actualized. The simulations further show that as long as the trapped configurations are bypassed, the face-centered-cubic (FCC) structures can be achieved and are actually more stable than BCC structures. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we describe experimental results on angularly resolved x-ray scatter from a sample of warm dense aluminium that has been created by double sided laser-driven shock compression. The experiment was carried out on the Central Laser Facility of the Rutherford Appleton Laboratory, using the VULCAN laser. The form of the angularly resolved scatter cross-section was compared with predictions based on a series of molecular dynamics simulations with an embedded atom potential, a Yukakwa potential and a bare Coulomb potential. The importance of screening is evident from the comparison and the embedded atom model seems to match experiment better than the Yukawa potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A parameter-free variational iterative method is proposed for scattering problems. The present method yields results that are far better, in convergence, stability and precision, than any other momentum space method. Accurate result is obtained for the atomic exponential (Yukawa) potential with an estimated error of less than 1 in 1015 (1010) after some 13 (10) iterations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.