896 resultados para Yield damage
Resumo:
A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.
Resumo:
The production and commercialization of citrus seedlings inspected and produced in protected screen-houses has become mandatory in Sao Paulo State, Brazil since January 2003. This law was intended to avoid the dispersion of Citrus Variegated Chlorosis (CVC), disease caused by Xylella fastidiosa. Our objective was to compare the yield over 8 years of `Natal` sweet orange trees grafted onto Rangpur lime obtained from healthy nursery plants and from plants artificially inoculated with X. fastidiosa. Yield was evaluated in an orchard planted in February 1999 with two treatments: (i) trees from healthy nursery plant, and (ii) trees from plants artificially inoculated with X. fastidiosa. The mean yield was 21% higher in trees from healthy nursery plants, as compared to trees from inoculated nursery plants. This difference represents a gain of approximately 203 boxes of 40.8 kg each, considering a planting density of 550 plants per hectare. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Factors influencing the relationship between whiteheads caused by the white stem borer Scirpophaga innotata (Walker) and grain yield were investigated. We determined the effect of different numbers of whiteheads on grain yield using different cultivars, nitrogen application, and at different field locations in Cilamaya, West Java. At the same number of panicles and whiteheads per plant, yield reduction is greater in cisadane than in IR64. With increasing nitrogen application, the range in panicle height increased. Except for Ketan, more whiteheads were recorded in shorter panicles. Two locations planted to the same cultivar showed different relationships between whiteheads and grain yield. The relationship between whiteheads and grain yield depends on the distribution of whiteheads in the field. Unless these factors have been taken into consideration, it may be difficult to make a damage prediction of white stem borer in the field. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.
Resumo:
Prevention and treatment of osteoporosis rely on understanding of the micromechanical behaviour of bone and its influence on fracture toughness and cell-mediated adaptation processes. Postyield properties may be assessed by nonlinear finite element simulations of nanoindentation using elastoplastic and damage models. This computational study aims at determining the influence of yield surface shape and damage on the depth-dependent response of bone to nanoindentation using spherical and conical tips. Yield surface shape and damage were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic-to-total work ratio is well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not statistically significant (p<0.0001). For spherical tips, damage was not a significant parameter (p<0.0001). The gained knowledge can be used for developing an inverse method for identification of postelastic properties of bone from nanoindentation.
Resumo:
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.
Resumo:
The objective of this work was to evaluate the effect of cover crops and timing of pre-emergence herbicide applications on soybean yield under no-tillage system. The experiment consisted of four cover crops (Panicum maximum, Urochloa ruziziensis, U. brizantha, and pearl millet) and fallow, in addition to four herbicide timings (30, 20, 10, and 0 days before soybean sowing), under no-tillage system (NTS), and of two control treatments under conventional tillage system (CTS). The experimental design was a completely randomized block, in a split-plot arrangement, with three replicates. Soybean under fallow, P. maximum, U. ruziziensis, U. brizantha, and pearl millet in the NTS and soybean under U. brizantha in the CTS did not differ significantly regarding yield. Soybean under fallow in the CTS significantly reduced yield when compared to the other treatments. The amount of straw on soil surface did not significantly affect soybean yield. Chemical management of P. maximum and U. brizantha near the soybean sowing date causes significant damage in soybean yield. However, herbicide timing in fallow, U. ruziziensis, and pearl millet does not affect soybean yield.
Resumo:
The effect of Heterodera glycines on photosynthesis, leaf area and yield of soybean (Glycine max) was studied in two experiments carried out under greenhouse condition. Soybean seeds were sown in 1.5 l (Experiment 1) or 5.0 l (Experiment 2) clay pots filled with a mixture of field soil + sand (1:1) sterilized with methyl bromide. Eight days after sowing, seedlings were thinned to one per pot, and one day later inoculated with 0; 1.200; 3.600; 10.800; 32.400 or 97.200 J2 juveniles of H. glycines. Experiment 1 was carried out during the first 45 days of the inoculation while Experiment 2 was conducted during the whole cycle of the crop. Measurements of photosynthetic rate, stomatic conductance, chlorophyll fluorescence, leaf color, leaf area, and chlorophyll leaf content were taken at ten-day intervals throughout the experiments. Data on fresh root weight, top dry weight, grain yield, number of eggs/gram of roots, and nematode reproduction factor were obtained at the end of the trials. Each treatment was replicated ten times. There was a marked reduction in both photosynthetic rate and chlorophyll content, as well as an evident yellowing of the leaves of the infected plants. Even at the lowest Pi, the effects of H. glycines on the top dry weight or grain yield were quite severe. Despite the parasitism, soybean yield was highly correlated with the integrated leaf area and, accordingly, the use of this parameter was suggested for the design of potential damage prediction models that include physiological aspects of nematode-diseased plants.
Resumo:
ABSTRACT Losses due to soybean anthracnose, caused by Colletotrichum truncatum, have not been systematically quantified in the field, and the efficacy of chemical control of this disease is not known. This study shows an estimate of losses associated with the disease in soybean crops in the north of the country. Two trials with cv. M9144 RR were carried out in commercial fields in Tocantins State in the 2010/2011 and 2011/2012 growing seasons, in randomized blocks, with four replicates. Foliar applications were performed on plants at R1/R2 and R5.2 stages, employing CO2-pressurized equipment and application volume of 200 L ha-1. Nine fungicides and one untreated control were compared, and the disease gradients in the two seasons were obtained. The percentage of infected pods was calculated at the R6 stage. Grain yield ranged from 3,288 to 3,708 kg/ha in the untreated plots in 2010/2011 and 2011/2012, respectively, and from 3,282 to 4,110 kg/ha in the treated plots. In the 2010/2011 season, only azoxystrobin + cyproconazole significantly reduced the disease incidence, compared to untreated control plots, not differing from the remaining treatments. In the 2011/2012 season, there were no significant differences between treated and untreated plots. Highly significant correlations (p < 0.01) were found between yield and soybean anthracnose incidence on pods in both years (r = -0.85). For each 1% increment in the disease incidence, c. 90 kg/ha of soybean grain were lost. The current study determined that significant losses due to anthracnose occur in commercial crops in the north of the country and highlighted the limitation of chemical control as anthracnose management method.
Resumo:
Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.
Resumo:
Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.
Resumo:
Citrus sudden death (CSD) has greatly affected sweet orange cultivars grafted on Rangpur lime in São Paulo and Minas Gerais States, Brazil. To characterize and quantify CSD damage, fruit yield and quality were assessed in each combination of sweet orange cultivar (Hamlin, Pera, Natal, and Valencia), age class (3 to 5, 6 to 10, and 11 to 15 years old), and CSD severity class (0 = no symptom, 1 = initial symptoms, and 2 = severe symptoms). For each combination, 10 trees were harvested and 20 fruit were taken for quality analysis. Damage was characterized by reduc_ tion of: (i) total weight of fruit/tree (36 and 67% for severity class 1 and 2, respectively), (ii) number of fruit/tree (27 and 55%), (iii) fruit size (13 and 25% in diameter and height [stem to styler distance]), (iv) fruit weight (32 and 56%), (v) total soluble solids (TSS)/fruit (18 and 42%), and increase of (vi) Brix (14 and 34%), (vii) acidity (16 and 41%), and (viii) TSS/90-1b. box (21 and 33%). There was no alteration on Brix/acidity ratio and percentage of juice on fruit of affected trees. Sweet orange cultivars did not differ in percentage of reduction or increase of all yield and quality variables, with the exception of Pera, which expressed increases of Brix and acidity. For more severe affected trees, the youngest plants showed a higher reduction in fruit number/tree, whereas plants 6 to 10 years old showed a higher increase in fruit acidity and TSS/box. However, no differences in percentage of reduction or increase for other variables were observed among different age classes. The damage to the above probably was associated with reduced water absorption capacity of CSD-affected trees.