971 resultados para YIELD RESPONSE
Resumo:
M. T. Rose, T. E. C. Weekes and P. Rowlinson (2004). Individual variation in the milk yield response to bovine somatotropin in dairy cows. Journal of Dairy Science, 87(7), 2024-2031. Sponsorship: industry RAE2008
Resumo:
The present investigation on “Coconut Phenology and Yield Response to Climate Variability and Change” was undertaken at the experimental site, at the Regional Station, Coconut Development Board, KAU Campus, Vellanikkara. Ten palms each of eight-year-old coconut cultivars viz., Tiptur Tall, Kuttiadi (WCT), Kasaragod (WCT) and Komadan (WCT) were randomly selected.The study therefore, reinforces our traditional knowledge that the coconut palm is sensitive to changing weather conditions during the period from primordium initiation to harvest of nuts (about 44 months). Absence of rainfall from December to May due to early withdrawal of northeast monsoon, lack of pre monsoon showers and late onset of southwest monsoon adversely affect the coconut productivity to a considerable extent in the following year under rainfed conditions. The productivity can be increased by irrigating the coconut palm during the dry periods.Increase in temperature, aridity index, number of severe summer droughts and decline in rainfall and moisture index were the major factors for a marginal decline or stagnation in coconut productivity over a period of time, though various developmental schemes were in operation for sustenance of coconut production in the State of Kerala. It can be attributed to global warming and climate change. Therefore, there is a threat to coconut productivity in the ensuing decades due to climate variability and change. In view of the above, there is an urgent need for proactive measures as a part of climate change adaptation to sustain coconut productivity in the State of Kerala.The coconut productivity is more vulnerable to climate variability such as summer droughts rather than climate change in terms of increase in temperature and decline in rainfall, though there was a marginal decrease (1.6%) in the decade of 1981-2009 when compared to that of 1951-80. This aspect needs to be examined in detail by coconut development agencies such as Coconut Development Board and State Agriculture Department for remedial measures. Otherwise, the premier position of Kerala in terms of coconut production is likely to be lost in the ensuing years under the projected climate change scenario. Among the four cultivars studied, Tiptur Tall appears to be superior in terms of reproduction phase and nut yield. This needs to be examined by the coconut breeders in their crop improvement programme as a part of stress tolerant under rainfed conditions. Crop mix and integrated farming are supposed to be the best combination to sustain development in the long run under the projected climate change scenarios. Increase in coconut area under irrigation during summer with better crop management and protection measures also are necessary measures to increase coconut productivity since the frequency of intensity of summer droughts is likely to increase under projected global warming scenario.
Resumo:
Six years ago the Northwest Iowa On-Farm Research Project was started to cooperate with local farmers to compare crop production methods on a field scale size. Through this project, over 300 replicated comparisons have been done. Beginning in 2012, the Northwest Iowa On-Farm Research project will be recognized as a part of Iowa State University Farmer Assisted Research and Management (FARM) program. This program will also expand to southwest Iowa, north central Iowa, and central Iowa.
Resumo:
Corn is planted earlier each year, which is one important component in maximizing grain yield. Earlier planting dates can be attributed to larger farms, less spring tillage, improvements in corn hybrids, improved drainage systems, and better seed treatments. Research conducted at the ISU Northwest Research Farm from 2006 through 2009 showed that the planting window for 98 percent or greater yield potential in northwest Iowa is April 15 to May 9. A 95 percent or greater yield potential can be realized from April 15 to May 18. A study was conducted from 2009 through 2011 at the Northwest Research Farm to determine how corn planted in early April compares with corn planted in the recommended planting window for the area.
Resumo:
Much of the soybean plant's nitrogen requirement is supplied through nitrogen fixation when atmospheric nitrogen is converted into a usable form for the plant. Nitrogen fixation is critical for producing higher yield in soybean. For nitrogen fixation to occur, nitrogen-fixing bacteria (genus Rhizobium) need to be present in the soil. If soils do not already contain a high population of Rhizobium, these bacteria can be added either as a liquid or granular peat inoculant, or as a peat-based powder. The different forms can be seed applied or used in-furrow.
Resumo:
Screening for drought resistance of rainfed lowland rice using drought score (leaf death) as a selection index has a long history of use in breeding programs. Genotypic variation for drought score during the vegetative stage in two dry season screens was examined among 128 recombinant inbred lines from four biparental crosses. The genotypic variation detected for drought score in the dry season was used to examine the reliability of the dry season screening method to estimate relative grain yield of genotypes under different types of drought stress in the wet season. Large genotypic variation for drought score existed in two experiments (A and B). However, there was no relationship between the drought scores of genotypes determined in these two experiments. Different patterns of development and severity of drought stress in these two experiments, i.e. slow development and mild plant water deficit in experiment A and fast development and severe plant water deficit in experiment B, were identified as the major factors contributing to the genotypes responding differently. Larger drought score in the dry season experiments was associated with lower grain yield under specific drought stress conditions in the wet season, but the association was weak to moderate and significant only in particular drought conditions. In most cases, a significant phenotypic and moderate genetic correlation between drought score in the dry season and grain yield in the wet season existed only when both drought score and grain yield of genotypes were affected by similar patterns and severity of drought stress in their respective experimental environments. The dry season environments used to measure genotypic variation for drought score should be managed to correspond to relevant types of drought environment that are frequent in the wet season. The efficiency of using the drought score as an indirect selection criterion for improving grain yield for drought conditions was lower than the direct selection for grain yield, and hence wet season screening with grain yield as a selection criterion would be more efficient. However, using drought score as a selection index, a larger number of genotypes can be evaluated than for wet season grain yield. Therefore, it is possible to apply higher selection intensities using the drought score system, and the selected lines can be further tested for grain yield in the wet season. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.
Resumo:
Disadvantages of invariable cereal cropping, concern of nutrient leaching and prices of nitrogen (N) fertilizer have all increased during last decades. An undersown crop, which grows together with a main crop and after harvest, could mitigate all those questions. The aim of this study was to develop undersowing in Finnish conditions, so that it suits for spring cereal farming as well as possible and enhances taking care of soil and environment, especially when control of N is concerned. In total, 17 plant species were undersown in spring cereals during the field experiments between 1991-1999 at four sites in South and Central Finland, but after selection, eight of them were studied more thoroughly. Two legumes, one grass species and one mixture of them were included in long-term trials in order to study annually repeated undersowing. Further, simultaneous broadcasting of seeds instead of separate undersowing was studied. Grain yield response and the capacity of the undersown crop to absorb soil N or fix N from atmosphere, and the release of N were of greatest interest. Seeding rates of undersown crops and N fertilization rates during annually repeated undersowing were also studied. Italian ryegrass (Lolium multiflorum Lam., IR) absorbed soil nitrate N (NO3-N) most efficiently in autumn and timothy (Phleum pratense L.) in spring. The capacity of other grass species to absorb N was low, or it was insufficient considering the negative effect on grain yield. Red clover (Trifolium pratense L.) and white clover (Trifolium repens L.) suited well in annually repeated undersowing, supplying fixed N for cereals without markedly increased risk of N leaching. Autumn oriented growth rhythm of the studied legumes was optimal for undersowing, whereas the growth rhythm of grasses was less suited but varied between species. A model of adaptive undersowing system was outlined in order to emphasize allocation of measures according needs. After defining the goal of undersowing, many decisions are to be done. When diminishing N leaching is primarily sought, a mixture of IR and timothy is advantageous. Clovers suit for replacing N fertilization, as the positive residual effect is greater than the negative effect caused by competition. A mixture of legume and non legume is a good choice when increased diversity is the main target. Seeding rate is an efficient means for adjusting competition and N effects. Broadcasting with soil covering equipment can be used to establish an undersown crop. In addition, timing and method of cover crop termination have an important role in the outcome. Continuous observing of the system is needed as for instance conditions significantly affect growth of undersown crop and on the other hand N release from crop residues may increase in long run.
Resumo:
More than 1200 wheat and 120 barley experiments conducted in Australia to examine yield responses to applied nitrogen (N) fertiliser are contained in a national database of field crops nutrient research (BFDC National Database). The yield responses are accompanied by various pre-plant soil test data to quantify plant-available N and other indicators of soil fertility status or mineralisable N. A web application (BFDC Interrogator), developed to access the database, enables construction of calibrations between relative crop yield ((Y0/Ymax) × 100) and N soil test value. In this paper we report the critical soil test values for 90% RY (CV90) and the associated critical ranges (CR90, defined as the 70% confidence interval around that CV90) derived from analysis of various subsets of these winter cereal experiments. Experimental programs were conducted throughout Australia’s main grain-production regions in different eras, starting from the 1960s in Queensland through to Victoria during 2000s. Improved management practices adopted during the period were reflected in increasing potential yields with research era, increasing from an average Ymax of 2.2 t/ha in Queensland in the 1960s and 1970s, to 3.4 t/ha in South Australia (SA) in the 1980s, to 4.3 t/ha in New South Wales (NSW) in the 1990s, and 4.2 t/ha in Victoria in the 2000s. Various sampling depths (0.1–1.2 m) and methods of quantifying available N (nitrate-N or mineral-N) from pre-planting soil samples were used and provided useful guides to the need for supplementary N. The most regionally consistent relationships were established using nitrate-N (kg/ha) in the top 0.6 m of the soil profile, with regional and seasonal variation in CV90 largely accounted for through impacts on experimental Ymax. The CV90 for nitrate-N within the top 0.6 m of the soil profile for wheat crops increased from 36 to 110 kg nitrate-N/ha as Ymax increased over the range 1 to >5 t/ha. Apparent variation in CV90 with seasonal moisture availability was entirely consistent with impacts on experimental Ymax. Further analyses of wheat trials with available grain protein (~45% of all experiments) established that grain yield and not grain N content was the major driver of crop N demand and CV90. Subsets of data explored the impact of crop management practices such as crop rotation or fallow length on both pre-planting profile mineral-N and CV90. Analyses showed that while management practices influenced profile mineral-N at planting and the likelihood and size of yield response to applied N fertiliser, they had no significant impact on CV90. A level of risk is involved with the use of pre-plant testing to determine the need for supplementary N application in all Australian dryland systems. In southern and western regions, where crop performance is based almost entirely on in-crop rainfall, this risk is offset by the management opportunity to split N applications during crop growth in response to changing crop yield potential. In northern cropping systems, where stored soil moisture at sowing is indicative of minimum yield potential, erratic winter rainfall increases uncertainty about actual yield potential as well as reducing the opportunity for effective in-season applications.
Resumo:
Two field experiments were established in central Queensland at Capella and Gindie to investigate the immediate and then residual benefit of deep placed (20 cm) nutrients in this opportunity cropping system. The field sites had factorial combinations of P (40 kg P/ha), K (200 kg K/ha) and S (40 kg S/ha) and all plots received 100 kg N/ha. No further K or S fertilizers were added during the experiment but some crops had starter P. The Capella site was sown to chickpea in 2012, wheat in 2013 and then chickpea in 2014. The Gindie site was sown to sorghum in 2011/12, chickpea in 2013 and sorghum in early 2015. There were responses to P alone in the first two crops at each site and there were K responses in half the six site years. In year 1 (a good year) both sites showed a 20% grain yield response to only to deep P. In year 2 (much drier) the effects of deep P were still evident at both sites and the effects of K were clearly evident at Gindie. There was a suggestion of an additive P+K effect at Capella and a 50% increase for P+K at Gindie. Year 3 was dry and chickpeas at Capella showed a larger response to P+K but the sorghum at Gindie only responded to deep K. These results indicate that responses to deep placed P and K are durable over an opportunity cropping system, and meeting both requirements is important to achieve yield responses.
Resumo:
Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Previous research on P leaf analysis for detecting deficiencies in cotton (Gossypium hirsutum L.) has not considered temperature as a determining factor. This is despite correlations between leaf P content and temperature being observed in other crops. As part of research into a new cotton farming system for the semi-arid tropics of Australia, we conducted two P fertiliser rate experiments on recently cleared un-cropped (bicarbonate P < 5 mg kg- 1) and previously cropped (bicarbonate P 26 mg kg- 1) soil. They aimed to develop P requirements and more importantly to determine if temperature affects the leaf P concentrations used to diagnose P deficiencies. In 2002, optimal yield on un-cropped, low P soil was achieved with a 60 kg P ha- 1 rate. In 2003, residual P from the 40 kg P ha- 1 treatment produced optimal yield. On cropped, high P soil there was no yield response to treatments up to 100 kg P ha- 1. On low P soil, a positive correlation was observed between P concentration in the youngest fully-unfurled leaf (YFUL), fertiliser rate, and mean diurnal temperature in the seven days prior to sampling. On high P soil, a positive correlation was observed between the YFUL and mean diurnal temperature however there was no correlation with fertiliser rate. These results show that YFUL analysis can be used to diagnose P deficiencies in cotton, provided the temperature prior to sampling is considered.
Resumo:
Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mgP/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.
Resumo:
Interest in cashew production in Australia has been stimulated by domestic and export market opportunities and suitability of large areas of tropical Australia. Economic models indicate that cashew production is profitable at 2.8 t ha-1 nut-in-shell (NIS). Balanced plant nutrition is essential to achieve economic yields in Australia, with nitrogen (N) of particular importance because of its capacity to modify growth, affect nut yield and cause environmental degradation through soil acidification and off-site contamination. The study on a commercial cashew plantation at Dimbulah, Australia, investigated the effect of N rate and timing on cashew growth, nut production, N leaching and soil chemical properties over five growth cycles (1995-1999). Nitrogen was applied during the main periods of vegetative (December-April) and reproductive (June-October) growth. Commercial NIS yields (up to 4.4 t ha-1 from individual trees) that exceeded the economic threshold of 2.8 t ha-1 were achieved. The yield response was mainly determined by canopy size as mean nut weight, panicle density and nuts per panicle were largely unaffected by N treatments. Nitrogen application confined to the main period of vegetative growth (December-April) produced a seasonal growth pattern that corresponded most consistently with highest NIS yield. This N timing also reduced late season flowering and undesirable post-November nut drop. Higher yields were not produced at N rates greater than 17 g m-2 of canopy surface area (equating to 210 kg N ha-1 for mature size trees). High yields were attained when N concentrations in Mveg leaves in May-June were about 2%, but this assessment occurs at a time when it is not feasible to correct N deficiency. The Mflor leaf of the preceding November, used in conjunction with the Mveg leaf, was proposed as a diagnostic tool to guide N rate decisions. Leaching of nitrate-N and acidification of the soil profile was recorded to 0.9 m. This is an environmental and sustainability hazard, and demonstrates that improved methods of N management are required.