963 resultados para YANG-BAXTER EQUATIONS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Yang-Mills equations only admit a Lagrangian for gauge groups which are either semisimple or Abelian, or a direct product of groups of both kinds. © 1988.
Resumo:
Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.
Resumo:
We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS5 by embedding the 4D Poincaré group into the 4D conformal group SO(2, 4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
In this thesis we consider algebro-geometric aspects of the Classical Yang-Baxter Equation and the Generalised Classical Yang-Baxter Equation. In chapter one we present a method to construct solutions of the Generalised Classical Yang-Baxter Equation starting with certain sheaves of Lie algebras on algebraic curves. Furthermore we discuss a criterion to check unitarity of such solutions. In chapter two we consider the special class of solutions coming from sheaves of traceless endomorphisms of simple vector bundles on the nodal cubic curve. These solutions are quasi-trigonometric and we describe how they fit into the classification scheme of such solutions. Moreover, we describe a concrete formula for these solutions. In the third and final chapter we show that any unitary, rational solution of the Classical Yang-Baxter Equation can be obtained via the method of chapter one applied to a sheaf of Lie algebras on the cuspidal cubic curve.
Resumo:
We review the status of integrable models from the point of view of their dynamics and integrability conditions. A few integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the 70th anniversaries of Andr, Swieca (in memoriam) and Roland Koberle.
Resumo:
We study a one-dimensional lattice model of interacting spinless fermions. This model is integrable for both periodic and open boundary conditions; the latter case includes the presence of Grassmann valued non-diagonal boundary fields breaking the bulk U(1) symmetry of the model. Starting from the embedding of this model into a graded Yang-Baxter algebra, an infinite hierarchy of commuting transfer matrices is constructed by means of a fusion procedure. For certain values of the coupling constant related to anisotropies of the underlying vertex model taken at roots of unity, this hierarchy is shown to truncate giving a finite set of functional equations for the spectrum of the transfer matrices. For generic coupling constants, the spectral problem is formulated in terms of a functional (or TQ-)equation which can be solved by Bethe ansatz methods for periodic and diagonal open boundary conditions. Possible approaches for the solution of the model with generic non-diagonal boundary fields are discussed.
Resumo:
A twisted generalized Weyl algebra A of degree n depends on a. base algebra R, n commuting automorphisms sigma(i) of R, n central elements t(i) of R and on some additional scalar parameters. In a paper by Mazorchuk and Turowska, it is claimed that certain consistency conditions for sigma(i) and t(i) are sufficient for the algebra to be nontrivial. However, in this paper we give all example which shows that this is false. We also correct the statement by finding a new set of consistency conditions and prove that the old and new conditions together are necessary and sufficient for the base algebra R to map injectively into A. In particular they are sufficient for the algebra A to be nontrivial. We speculate that these consistency relations may play a role in other areas of mathematics, analogous to the role played by the Yang-Baxter equation in the theory of integrable systems.
Resumo:
Nella tesi verranno presi in considerazione tre aspetti: si descriverà come la teoria dei nodi si sia sviluppata nel corso degli anni in relazione alle diverse scoperte scientifiche avvenute. Si potrà quindi subito avere una idea di come questa teoria sia estremamente connessa a diverse altre. Nel secondo capitolo ci si occuperà degli aspetti più formali di questa teoria. Si introdurrà il concetto di nodi equivalenti e di invariante dei nodi. Si definiranno diversi invarianti, dai più elementari, le mosse di Reidemeister, il numero di incroci e la tricolorabilità, fino ai polinomi invarianti, tra cui il polinomio di Alexander, il polinomio di Jones e quello di Kaufman. Infine si spiegheranno alcune applicazioni della teoria dei nodi in chimica, fisica e biologia. Sulla chimica, si definirà la chiralità molecolare e si mostrerà come la chiralità dei nodi possa essere utile nel determinare quella molecolare. In campo fisico, si mostrerà la relazione che esiste tra l'equazione di Yang-Baxter e i nodi. E in conclusione si mostrerà come modellare un importante processo biologico, la recombinazione del DNA, grazie alla teoria dei nodi.
Resumo:
Nella tesi vengono presentate alcune relazioni fra gruppi quantici e modelli reticolari. In particolare si associa un modello vertex a una rappresentazione di un'algebra inviluppante quantizzata affine e si mostra che, specializzando il parametro quantistico ad una radice dell'unità, si manifestano speciali simmetrie.
Resumo:
Scopo di questa tesi é di evidenziare le connessioni tra le categorie monoidali, l'equazione di Yang-Baxter e l’integrabilità di alcuni modelli. Oggetto prinacipale del nostro lavoro é stato il monoide di Frobenius e come sia connesso alle C∗-algebre. In questo contesto la totalità delle dimostrazioni sfruttano la strumentazione dell'algebra diagrammatica. Nel corso del lavoro di tesi sono state riprodotte tali dimostrazioni tramite il più familiare linguaggio dell’algebra multilineare allo scopo di rendere più fruibili questi risultati ad un raggio più ampio di potenziali lettori.