942 resultados para YAM STARCH
Resumo:
Starch extraction from roots and tubers uses grating with water and sieves to separate the starch slurry from residual mass. The starch is recovered by decantation or centrifugation. The yam starch extraction is difficult due to high viscosity of the slurry caused by non-starch polysaccharides (NSP). The establishment of an efficient extraction process may turn yam into a competitive raw material. In this paper Dioscorea alata starch extracted by four methods was characterized in order to establish the impact of treatments. When the tubers were digested with an aqueous oxalic acid/ammonium oxalate (OA/AO) 1/1 solution, it was easier to separate the starch slurry from residual mass, because viscosity was reduced. For all the others methods tested, the viscosity remained almost the same. The nitrogen present in yam tubers was removed during the different extractions to a different extent. The largest nitrogen reduction was observed with ONAO followed by the control (water). The spectrum of starch granules sizes obtained also varied according to the treatment. Results proved that NSP carries small starch granules over to the waste water. The smaller starch granules diameter varied from 1.9 mu m (OA/AO extraction) to 13.5 mu m (water and pectinase extractions). The larger diameter varied from 41.0 mu m (NaOH treatment) to 67.7 mu m (ONAO). All starches extracted showed a RVA behavior in agreement with literature for yam starch, but with small differences due to the influence of methods. ONAO extraction showed the best recovery (18 g of starch/100 g tuber yam) and granular variation but it interfered with the rheological behavior of starch.
Resumo:
The aim of this work was to investigate the effect of glycerol contents on physical properties of cassava starch films. The films were prepared from film-forming solutions (FFS) with 2g cassava starch/100g water and 0, 15, 30 and 45g glycerol/100g starch, and were analysed to determine its mechanical properties by tensile tests, the glass-transition temperature (T-g) by differential scanning calorimetry (DSC) and the crystallinity by X-ray diffraction (XRD). The infrared spectra of the films were also recorded. The resistance values of the films decreased, while those of the elasticity increased with an increase in glycerol concentration due to the plasticizer effect of glycerol, which was also observed in DSC curves. The T-g of the films prepared decreased with the glycerol content. However, for samples with 30 and 45g glycerol/100g starch, two T-g curves were observed, probably due to a phase separation phenomenon. According to the XRD diffractograms, the films with 0 and 15gglycerol/100g starch presented an amorphous character, but some tendency to show crystalline peaks were observed for films with 30 and 45g glycerol/100g starch. The results obtained with Fourier transform infrared (FTIR) corroborated these observations. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Recent multidisciplinary investigations document an independent emergence of agriculture at Kuk Swamp in the highlands of Papua New Guinea. In this paper we report preliminary usewear analysis and details of prehistoric use of stone tools for processing starchy food and other plants at Kuk Swamp. Morphological diagnostics for starch granules are reported for two potentially significant economic species, taro (Colocasia esculenta) and yam (Dioscorea sp.), following comparisons between prehistoric and botanical reference specimens. Usewear and residue analyses of starch granules indicate that both these species were processed on the wetland margin during the early and mid Holocene. We argue that processing of taro and yam commences by at least 10,200 calibrated years before present (cal BP), although the taro and yam starch granules do not permit us to distinguish between wild or cultivated forms. From at least 6950 to 6440 cal BP the processing of taro, yam and other plants indicates that they are likely to have been integrated into cultivation practices on the wetland edge.
Resumo:
This study had as objective to evaluate the effect of yam starch, modified starch from Cargill-Brasil (Amidomax 4800 (R)) and gelatin from Gelita-Brasil (GEL-LAC) as stabilizers/thickeners in different ratios and combinations in the soy yoghurt fermented with Enterococcus faecium and Lactobacillus helveticus ssp jugurti. Ten soy yoghurt formulations containing these different stabilizers/thickeners, always totalizing 0.5% in relation to the final formulation, were analyzed in sensorial and physical-chemical terms. Based on the observed results, it was concluded in relation to the sensorial point of view that the more appropriate product was processed only with gelatin at 0.5% concentration. This product also presented the best physical-chemical results related to consistency, syneresis and water holding capacity. However, the isolated use of gelatin increased fermentation time of the soy yoghurt.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Although sparsely populated today, the Llanos de Mojos, Bolivia, sustained large sedentary societies in the Late Holocene (ca. 500 to 1400 AD). In order to gain insight into the subsistence of these people, we undertook macrobotanical and phytolith analyses of sediment samples, and starch grain and phytolith analyses of artifact residues, from four large habitation sites within this region. Macrobotanical remains show the presence of maize (Zea mays), squash (Cucurbita sp.), peanut (Arachis hypogaea), cotton (Gossypium sp.), and palm fruits (Arecaceae). Microbotanical results confirm the widespread use of maize at all sites, along with manioc (Manihot esculenta), squash, and yam (Dioscorea sp.). These integrated results present the first comprehensive archaeobotanical evidence of the diversity of plants cultivated, processed, and consumed, by the pre-Hispanic inhabitants of the Amazonian lowlands of Bolivia.
Resumo:
Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests
Resumo:
The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.
Resumo:
THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films
Resumo:
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.
Resumo:
This project aim was to replace petroleum-based plastic packaging materials that pollute the environment, with biodegradable starch-based polymer composites. It was demonstrated that untreated sugar cane bagasse microfibres and unbleached nanofibres significantly improved the physical, mechanical and chemical properties of starch films, while thermal extrusion of starch with alcohol improved the stiffness and the addition of aconitic acid cross-linked the film making it moisture resistant and extensible.