999 resultados para Xuanwei Formation
Resumo:
本论文应用揭膜方法(Peeling Method)对产于我国西南地区滇东黔西一带晚二叠世地层中的保存有解剖构造的莲座蕨目化石进行了较为深入的研究,包括3 种茎和一种生殖器官。3 种茎中有二种为本文首次研究,均归入辉木属Psaronius Cotta,建立了二个新种:盘县辉木P. panxianensis 和老屋基辉木P. laowujiensis;另外一个种-田氏辉木P. tianii Li(MS)为前人所建立,但未正式发表,本文做了重新研究,新发现了一些特征,并对一些已有特征做了修订。讨论了这3 个种一些重要特征的分类和系统演化意义,这些特征包括:叶迹最后分出时的维管构型、维管束鞘和边缘茎维管束内侧的厚壁组织束。通过对不同地区和不同时代辉木属已有种的特征分析,对辉木属属下分类做了尝试,根据维管束是否结成环状、叶迹维管构型、是否具维管束鞘、边缘茎维管束内侧的厚壁组织束的发育与否、边缘茎维管束是否分叉等特征将辉木属已有种(包括本文所研究的3 个种)分为5 个组:1. Blicklei 组,代表种为Psaronius blicklei Morgan,包括欧美植物区目前已知各种,可能还包括华夏植物区的一些种。它们的主要特征是:不具维管束鞘;边缘茎维管束内侧的厚壁组织束不发育。2.Panxianensis 组,代表种为盘县辉木Psaronius panxianensis He,Wang,Hilton,Tian et Zhou,包括王氏辉木、老屋基辉木、江苏辉木,可能还有八角辉木和六角辉木。最主要特征是:具维管束鞘,简单,仅由薄壁细胞构成;边缘茎维管束内侧具树枝状和伞状或锚状厚壁组织束;叶迹由3 根维管束构成。该组目前仅发现于华南地区二叠系。3. Tianii 组,以田氏辉木Psaronius tianii Li(MS)为代表,目前只有这一个种。该组的主要特征:具维管束鞘,复杂,可分为两层;边缘茎维管束内侧具菊花状厚壁组织束,且每两环维管束之间具两条厚壁组织束,其中一条连续,另一条不连续;叶迹呈歪斜的弓形或M 形;叶迹维管束与茎维管束等粗;边缘茎维管束可分叉。该组目前仅发现于华南地区二叠系。4. Brasiliensis 组,以巴西辉木Psaronius brasiliensis Brongniart 为代表,除巴西辉木外,可能还包括P. sp. Herbst。该组的最主要特征就是其维管束的一端内卷并与主体部分连接形成一个封闭的环状构造;茎中央的维管束小,形态多变,而且排列十分不规则。该组目前仅发现于南美地区二叠系。5. Sinuosus 组,以P. sinuosus Herbst 为代表,目前也只有此一个种。其最主要的特征就是叶迹具多个维管束,且排列无规则;茎维管束非常长,呈盘绕状。该组目前仅发现于南美地区二叠系。生殖器官归入虫囊蕨属Scolecopteris(Zenker)Millay,建立一新种:贵州虫囊蕨。该种仅保存有聚合囊和分散的孢子囊,生殖小羽片不明。孢子囊面向外的壁较厚,但分化,自内向外可分为三部分;孢子具三缝,较大,直径55-60μm。由于该种同时拥有Millay 认为的原始特征(大的孢子)和进化特征(即分化的孢子囊面向外的壁)。很可能Millay 的观点仅仅反映了欧美植物区虫囊蕨属的演化规律。
Resumo:
A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.
Resumo:
The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.
Resumo:
Background: Aerosol production during normal breathing is often attributed to turbulence in the respiratory tract. That mechanism is not consistent with a high degree of asymmetry between aerosol production during inhalation and exhalation. The objective was to investigate production symmetry during breathing. Methods: The aerosol size distribution in exhaled breath was examined for different breathing patterns including normal breathing, varied breath holding periods and contrasting inhalation and exhalation rates. The aerosol droplet size distribution measured in the exhaled breath was examined in real time using an aerodynamic particle sizer. Results and Conclusions: The dependence of the particle concentration decay rate on diameter during breath holding was consistent with gravitational settling in the alveolar spaces. Also, deep exhalation resulted in a 4 to 6 fold increase in concentration and rapid inhalation produced a further 2 to 3 fold increase in concentration. In contrast rapid exhalation had little effect on the measured concentration. A positive correlation of the breath aerosol concentration with subject age was observed. The results were consistent with the breath aerosol being produced through fluid film rupture in the respiratory bronchioles in the early stages of inhalation and the resulting aerosol being drawn into the alveoli and held before exhalation. The observed asymmetry of production in the breathing cycle with very little aerosol being produced during exhalation, is inconsistent with the widely assumed turbulence induced aerosolization mechanism.
Resumo:
Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.
Resumo:
Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.
Resumo:
To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.