931 resultados para Xmni polymorphism
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Human hemoglobin genes are located in α and β globin gene clusters in chromosomes 16 and 11, respectively. Different types of hemoglobin are synthesized according to the stage of development with fetal hemoglobin (α2γ2) (Hb F) being the main hemoglobin in the fetal period. After birth, there is a reduction (to about 1%) in Hb F levels and adult hemoglobin, Hb A (2α2β2), increases to more than 96% of total hemoglobin. However, some genetic conditions whether linked to the β-globin gene cluster or not are associated with high Hb F levels in adults. Among those linked to β-globin are hereditary persistence of fetal hemoglobin, delta-beta thalassemia (δβ-Thalassemia) and the XmnI polymorphism (-158 C > T). Other polymorphisms not related to β-globin gene cluster are known to influence the γ-globin gene expression in adulthood. The most relevant polymorphisms that increase concentrations of Hb F are the HMIP locus on chromosome 6, the BCL11A locus on chromosome 2, the Xp22.2 region of the X chromosome and the 8q region on chromosome 8. Findings from our research group studying genetic factors involved in γ-globin gene regulation in adults without anemia in the northwestern region of São Paulo State showed that high Hb F levels are influenced by the presence of hereditary persistence of fetal hemoglobin mutations and the XmnI polymorphism, suggesting that both genetic alterations characterize the molecular basis of the evaluated population.
Resumo:
Fetal hemoglobin (Hb F), formed by two alpha globin chains (α) and two gamma chains (γ) (α2 γ2), has reduced expression in adults, ranging from 0 to 1% of total hemoglobin. Increased levels of Hb F are due to mutations in the β-globin family, which cause hereditary persistence of fetal hemoglobin (HPFH) and delta-beta thalassemia (δβ-thalassemia).The control of the production takes place by the regulatory region and regions outside the β-globin family, among them 2q16, 6q23, 8q, and Xp22.2.The aims of this study were to determine the presence and frequency of two mutations for δβ-thalassemia, the XmnI polymorphism and β-globin haplotypes in healthy individuals with increased Hb F in the State of São Paulo. We analyzed 60 samples of peripheral blood of healthy adults, without complaints of anemia. The samples were separated into two groups according to Hb F level: group I - 34 samples with Hb F ranging from 2 to 15% and group II - 26 samples with Hb F over 15%. In relation to the polymorphisms examined, we found three heterozygous individuals (5%) for Spanish δβ-thalassemia, belonging to group I, whose Hb F levels were within the normal range.The Sicilian δβ-thalassemia mutation was not found, indicating the need to study other polymorphisms related to the increase of Hb F in adult life.The frequency of XmnI polymorphism was 33.3% and the mean Hb F levels were 15.48 ± 11.69%.The frequency observed in our study for this polymorphic site is higher than that found in the literature for healthy subjects.This polymorphism was more prevalent in individuals with Hb F levels below 15%. For four samples positive for this polymorphism, the Hb F levels were explained by the presence of HPFH and Spanish δβ-thalassemia mutations, so that the presence of the XmnI polymorphic site was not a determinant in the overexpression of γ-globin genes. Regarding β-globin haplotypes, 18 alleles and 27 distinct genotypic patterns were found.The pattern Atp1/Atp2 was the mostfrequent genotype (13.72%).Of the 18 alleles, 13 showed atypical patterns.The results show that the haplotype V was the most frequent (27.45%), followed by atypical Atp2 (13.72%) and Atp1 (11.76%), and that there was a higher correlation with the presence of HPFH and XmnI polymorphism.The high frequency of haplotype V in our samples and high frequency of atypical haplotypes may reflect a high rate of miscegenation in this population, suggesting an ethnic characteristic for the Brazilian population, requiring the evaluation of population genetic markers to corroborate this hypothesis. © FUNPEC-RP.
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Genetic polymorphisms in hepatically expressed UGT1A1 and UGT1A9 contribute to the interindividual variability i-n irinotecan disposition and toxicity. We screened UGT1A1 (UGT1A1*60, g.−3140G>A, UGT1A1*28 and UGT1A1*6) and UGT1A9 (g.−118(T)9>10 and I399C>T) genes for polymorphic variants in the promoter and coding regions, and the genotypic effect of UGT1A9 I399C>T polymorphism on irinotecan disposition in Asian cancer patients was investigated. Blood samples were collected from 45 patients after administration of irinotecan as a 90 min intravenous infusion of 375 mg/m2 once in every 3 weeks. Genotypic–phenotypic correlates showed that cancer patients heterozygous or homozygous for the I399C>T allele had approximately 2-fold lower systemic exposure to SN-38 (P<0.05) and a trend towards a higher relative extent of glucuronidation (REG) of SN-38 (P>0.05). UGT1A1–1A9 diplotype analysis showed that patients harbouring the H1/H2 (TG6GT10T/GG6GT9C) diplotype had 2.4-fold lower systemic exposure to SN-38 glucuronide (SN-38G) compared with patients harbouring the H1/H5 (TG6GT10T/GG6GT10C) diplotype (P=0.025). In conclusion, this in vivo study supports the in vitro findings of Girard et al. and suggests that the UGT1A9 I399C>T variant may be an important glucuronidating allele affecting the pharmacokinetics of SN-38 and SN-38G in Asian cancer patients receiving irinotecan chemotherapy.
Resumo:
Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.
Resumo:
Background: The C allele of a common polymorphism of the serotonin 2A receptor (HTR2A) gene, T102C, results in reduced synthesis of 5-HT2A receptors and has been associated with current smoking status in adults. The -1438A/G polymorphism, located in the regulatory region of this gene, is in linkage disequilibrium with T102C, and the A allele is associated with increased promoter activity and with smoking in adult males. We investigated the contributions of the HTR2A gene, chronic psychological stress, and impulsivity to the prediction of cigarette smoking status and dependence in young adults. Methods: T102C and -1438A/G genotyping was conducted on 132 healthy Caucasian young adults (47 smokers) who completed self-report measures of chronic stress, depressive symptoms, impulsive personality and cigarette use. Results: A logistic regression analysis of current cigarette smoker user status, after adjusting for gender, depressive symptom severity and chronic stress, indicated that the T102C TT genotype relative to the CC genotype (OR = 7.53), and lower punishment sensitivity (OR = 0.91) were each significant predictive risk factors. However, for number of cigarettes smoked, only lower punishment sensitivity was a significant predictor (OR = 0.81). Conclusions: These data indicate the importance of the T102C polymorphism to tobacco use but not number of cigarettes smoked for Caucasian young adults. Future studies should examine whether this is explained by effects of nicotine on the serotonin system. Lower punishment sensitivity increased risk of both smoking and of greater consumption, perhaps via a reduced sensitivity to cigarette health warnings and negative physiological effects.
Resumo:
Antipsychotic medications act as either antagonists or partial agonists of the dopamine D2 receptor (DRD2) and antipsychotic drugs vary widely in their binding affinity for the D2 receptor (Kapur and Seeman, 2000). The DRD2 957CNT (rs6277) polymorphism has previously been associated with schizophrenia (Lawford et al., 2005) and the T-allele of the 957CNT polymorphism is associated with reduced mRNA stability and synthesis of the dopamine D2 receptor (Duan et al., 2003). The aim of the study was to determine if the rs6277 polymorphism predicts some of the variability of positive and negative symptoms observed in schizophrenia patients being treated with antipsychotic medication.
Resumo:
Background A number of studies have found associations between dysbindin (DTNBP1) polymorphisms and schizophrenia. Recently we identified a DTNBP1 SNP (rs9370822) that is strongly associated with schizophrenia. Individuals diagnosed with schizophrenia were nearly three times as likely to carry the CC genotype compared to the AA genotype. Methods To investigate the importance of this SNP in the function of DTNBP1, a number of psychiatric conditions including addictive behaviours and anxiety disorders were analysed for association with rs9370822. Results The DTNBP1 polymorphism was significantly associated with post-traumatic stress disorder (PTSD) as well as nicotine and opiate dependence but not alcohol dependence. Individuals suffering PTSD were more than three times as likely to carry the CC genotype compared to the AA genotype. Individuals with nicotine or opiate dependence were more than twice as likely to carry the CC genotype compared to the AA genotype. Conclusions This study provides further support for the importance of DTNBP1 in psychiatric conditions and suggests that there is a common underlying molecular defect involving DTNBP1 that contributes to the development of several anxiety and addictive disorders that are generally recognised as separate clinical conditions. These disorders may actually be different expressions of a single metabolic pathway perturbation. As our participant numbers are limited our observations should be viewed with caution until they are independently replicated.
Resumo:
In total, 782 Escherichia coli strains originating from various host sources have been analyzed in this study by using a highly discriminatory single-nucleotide polymorphism (SNP) approach. A set of eight SNPs, with a discrimination value (Simpson's index of diversity [D]) of 0.96, was determined using the Minimum SNPs software, based on sequences of housekeeping genes from the E. coli multilocus sequence typing (MLST) database. Allele-specific real-time PCR was used to screen 114 E. coli isolates from various fecal sources in Southeast Queensland (SEQ). The combined analysis of both the MLST database and SEQ E. coli isolates using eight high-D SNPs resolved the isolates into 74 SNP profiles. The data obtained suggest that SNP typing is a promising approach for the discrimination of host-specific groups and allows for the identification of human-specific E. coli in environmental samples. However, a more diverse E. coli collection is required to determine animal- and environment-specific E. coli SNP profiles due to the abundance of human E. coli strains (56%) in the MLST database.