106 resultados para Xerogels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Article addresses the formation of chiral supramolecular structures in the organogels derived from chiral organogelator 1R (or 2R), and its mixtures with its enantiomer (1S) and achiral analogue 3 by extensive circular dichroism (CD) spectroscopic measurements. Morphological analysis by atomic force microscopy (AFM) and scanning electron microscopy (SEM) were complemented by the measurements of their bulk properties by thermal stability and rheological studies. Specific molecular recognition events (1/3 vs 2/3) and solvent effects (isooctane vs dodecane) were found to be critical in the formation of chiral aggregates. Theoretical studies were also carried out to understand the interactions responsible for the formation of the superstructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work combines two rapidly growing research areas-functional supramolecular gels and lanthanide based hybrid materials. Facile hydrogel formation from several lanthanide(III) cholates has been demonstrated. The morphological and mechanical properties of these cholate gels were investigated by TEM and rheology. The hydrogel matrix was subsequently utilized for the sensitization of Tb(III) by doping a non-coordinating chromophore, 2,3-dihydroxynaphthalene (DHN), at micromolar concentrations. In the mixed gels of Tb(III)-Eu(III), an energy transfer pathway was found to operate from Tb(III) to Eu(III) and by utilizing this energy transfer, tunable multiple-color luminescent hydrogels were obtained. The emissive properties of the hydrogels were also retained in the xerogels and their suspensions in n-hexane were used for making luminescent coating on glass surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunicación (Poster) en panel del congreso: Designing New Heterogeneous Catalysts, Faraday Discussion, 4–6 April 2016. London, United Kingdom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-doped and B, Al co-doped SiO2 xerogels with Eu2+ ions were prepared only by sol-gel reaction in air without reducing heat-treatment or post-doping. The luminescence characteristics and mechanism of europium doping SiO2 xerogels were studied as a function of the concentration of Al, B, the europium concentration and the host composition. The emission spectra of the Al-doped and B, Al codoped samples all show an efficient emission broad band in the blue violet range. The blue emission of the Al-doped sample was centered at 437 nm, whereas the B, Al co-doped xerogel emission maximum shifted to 423 nm and the intensity became weaker. Concentration quenching effect occurred in both the Al-doped and B, Al co-doped samples, which probably is the result of the transfer of the excitation energy from Eu2+ ions to defects. The highest Eu2+ emission intensity was observed for samples with the Si(OC2H5)(4):C2H5OH:H2O molar ratio of 1:2:4. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of luminescent organic-inorganic hydrid material consisting of Eu(III)-schiff base complex covalently bonded to silica xerogel was synthesized via the sol-gel method using a Eu (N-propylene salicylimine ligand) complex modified with pendant triethoxysilane groups (Eu(III)(salenHSi)). The Eu(III)(salenHSi) complex is characterized by Fourier transform infrared (FT-IR) spectroscopy. Luminescent properties of the complex and the resulted hybrid silica xerogels have been investigated at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The samples of as-synthesized siliceous MCM-41, extracted MCM-41, amorphous silica particles and silica xerogels were heat treated from room temperature to 1000degreesC. Their photoluminescence (PL) spectra at room temperature excited by 254nm and 365nm ultraviolet light (UV) were investigated and compared. Excited by 254nm UV the MCM-41 samples do not display PL but amorphous silica particles and silica xerogels show PL, which changes with the heat treatment conditions for the samples. However, when excited by 365nm UV the PL spectra for the MCM-41 and the amorphous samples are similar. The carbon impurity and E' center mechanisms can be ruled out as the origin of PL in siliceous MCM-41 under UV excitation. The PL of MCM-41 series samples probably originates from oxygen-related defect center like dropSi-O-. according to the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organically modified silica xerogels (OMSX) and Eu3+ (Tb3+)-doped OMSX were prepared by the reaction of (3-aminopropyl) triethoxysilane (APS) with 3-isocyanatepropyltriethoxysilane (ICPTES) followed by the subsequent hydrolysis and condensation in the presence of Eu3+ (Tb3+) via sol-gel method, which were characterized by FT-IR, XRD, fluorescence excitation and emission spectra. The as-formed OMSX shows a strong blue emission with the maximum excitation and emission wavelength at 351 and 420 nm, respectively. Due to the spectral overlap between the emission band of OMSX and f-f absorption lines of Eu3+ and Tb3+ in the UV-blue region, an energy transfer was observed from OMSX host to Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. Excitation at 350-360 nm resulted in a very weak emission around 420 nm from OMSX host and strong emission of Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. The emission spectra of Eu3+ and Tb3+ consist of D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and D-5(4)-F-7(J) (J = 6, 5, 4, 3), respectively. Furthermore, the predicted structure of OMSX/Eu3+ and OMSX/Tb3+ is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid SiO2 xerogels were prepared by the sol-gel method under various preparation conditions and compositions by using tetraethoxysilane (TEOS), (3-aminopropyl) triethoxysilane (A-PS), (3-glycidoxypropyl) trimethoxysilane (GPS), organic acid (CH3COOH) and inorganic acids (HCl, HNO3, H2SO4) as the main precursors. Luminescence and FT-IR spectra were used to characterize the resulted hybrid SiO2 xerogels. The result of FT-IR spectrum shows that the xerogels are composed of non-crystalline -Si-O-Si- networks containing some organic groups such as -NH, -CH and -OH. Under the excitation of 365 nm, all the hybrid xerogels exhibit strong luminescence in the blue region, but the emission intensity and position depend on the starting precursor compositions to a large extent. Suitable amount of polyethylene glycol (PEG500 and PEG10000) in the hybrid xerogels can enhance the emission intensity. Additionally, the emission intensity of the hybrid xerogels increases with heat treatment temperature in the range of ambient to 200degreesC, and vacuum condition is also able to enhance the emission intensity.