967 resultados para XLINK-BASED MULTIDIMENSIONAL METAMODEL (XLDM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current commercial and academic OLAP tools do not process XML data that contains XLink. Aiming at overcoming this issue, this paper proposes an analytical system composed by LMDQL, an analytical query language. Also, the XLDM metamodel is given to model cubes of XML documents with XLink and to deal with syntactic, semantic and structural heterogeneities commonly found in XML documents. As current W3C query languages for navigating in XML documents do not support XLink, XLPath is discussed in this article to provide features for the LMDQL query processing. A prototype system enabling the analytical processing of XML documents that use XLink is also detailed. This prototype includes a driver, named sql2xquery, which performs the mapping of SQL queries into XQuery. To validate the proposed system, a case study and its performance evaluation are presented to analyze the impact of analytical processing over XML/XLink documents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new algorithm for waveletbased multidimensional image deconvolution which employs subband-dependent minimization and the dual-tree complex wavelet transform in an iterative Bayesian framework. In addition, this algorithm employs a new prior instead of the popular ℓ1 norm, and is thus able to embed a learning scheme during the iteration which helps it to achieve better deconvolution results and faster convergence. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a framework for pattern-based model evolution approaches in the MDA context. In the framework, users define patterns using a pattern modeling language that is designed to describe software design patterns, and they can use the patterns as rules to evolve their model. In the framework, design model evolution takes place via two steps. The first step is a binding process of selecting a pattern and defining where and how to apply the pattern in the model. The second step is an automatic model transformation that actually evolves the model according to the binding information and the pattern rule. The pattern modeling language is defined in terms of a MOF-based role metamodel, and implemented using an existing modeling framework, EMF, and incorporated as a plugin to the Eclipse modeling environment. The model evolution process is also implemented as an Eclipse plugin. With these two plugins, we provide an integrated framework where defining and validating patterns, and model evolution based on patterns can take place in a single modeling environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recommender systems based on multidimensional data, additional metadata provides algorithms with more information for better understanding the interaction between users and items. However, most of the profiling approaches in neighbourhood-based recommendation approaches for multidimensional data merely split or project the dimensional data and lack the consideration of latent interaction between the dimensions of the data. In this paper, we propose a novel user/item profiling approach for Collaborative Filtering (CF) item recommendation on multidimensional data. We further present incremental profiling method for updating the profiles. For item recommendation, we seek to delve into different types of relations in data to understand the interaction between users and items more fully, and propose three multidimensional CF recommendation approaches for top-N item recommendations based on the proposed user/item profiles. The proposed multidimensional CF approaches are capable of incorporating not only localized relations of user-user and/or item-item neighbourhoods but also latent interaction between all dimensions of the data. Experimental results show significant improvements in terms of recommendation accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling the performance behavior of parallel applications to predict the execution times of the applications for larger problem sizes and number of processors has been an active area of research for several years. The existing curve fitting strategies for performance modeling utilize data from experiments that are conducted under uniform loading conditions. Hence the accuracy of these models degrade when the load conditions on the machines and network change. In this paper, we analyze a curve fitting model that attempts to predict execution times for any load conditions that may exist on the systems during application execution. Based on the experiments conducted with the model for a parallel eigenvalue problem, we propose a multi-dimensional curve-fitting model based on rational polynomials for performance predictions of parallel applications in non-dedicated environments. We used the rational polynomial based model to predict execution times for 2 other parallel applications on systems with large load dynamics. In all the cases, the model gave good predictions of execution times with average percentage prediction errors of less than 20%

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Models are becoming increasingly important in the software development process. As a consequence, the number of models being used is increasing, and so is the need for efficient mechanisms to search them. Various existing search engines could be used for this purpose, but they lack features to properly search models, mainly because they are strongly focused on text-based search. This paper presents Moogle, a model search engine that uses metamodeling information to create richer search indexes and to allow more complex queries to be performed. The paper also presents the results of an evaluation of Moogle, which showed that the metamodel information improves the accuracy of the search.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concept of competitiveness, for a long time considered as strictly connected to economic and financial performances, evolved, above all in recent years, toward new, wider interpretations disclosing its multidimensional nature. The shift to a multidimensional view of the phenomenon has excited an intense debate involving theoretical reflections on the features characterizing it, as well as methodological considerations on its assessment and measurement. The present research has a twofold objective: going in depth with the study of tangible and intangible aspect characterizing multidimensional competitive phenomena by assuming a micro-level point of view, and measuring competitiveness through a model-based approach. Specifically, we propose a non-parametric approach to Structural Equation Models techniques for the computation of multidimensional composite measures. Structural Equation Models tools will be used for the development of the empirical application on the italian case: a model based micro-level competitiveness indicator for the measurement of the phenomenon on a large sample of Italian small and medium enterprises will be constructed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.