33 resultados para XIAP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mebendazole (MBZ) was identified as a promising therapeutic on the basis of its ability to induce apoptosis in melanoma cell lines through a B-cell lymphoma 2 (BCL2)-dependent mechanism. We now show that in a human xenograft melanoma model, oral MBZ is as effective as the current standard of care temozolomide in reducing tumor growth. Inhibition of melanoma growth in vivo is accompanied by phosphorylation of BCL2 and decreased levels of X-linked inhibitor of apoptosis (XIAP). Reduced expression of XIAP on treatment with MBZ is partially mediated by its proteasomal degradation. Furthermore, exposure of melanoma cells to MBZ promotes the interaction of SMAC/DIABLO with XIAP, thereby alleviating XIAP's inhibition on apoptosis. XIAP expression on exposure to MBZ is indicative of sensitivity to MBZ as MBZ-resistant cells do not show reduced levels of XIAP after treatment. Resistance to MBZ can be reversed partially by siRNA knockdown of cellular levels of XIAP. Our data indicate that MBZ is a promising antimelanoma agent on the basis of its effects on key antiapoptotic proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide 'Safety-Catch' resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1µM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptidic nature of anti-IAPs N-terminus Smac-derived peptides precludes their utilization as potential therapeutic anticancer agents. Recent advances in the development of novel Smac-derived peptidomimetics and non-peptidic molecules with improved anti-IAPs activity and resistance to proteolytic cleavage have been reported and led to a number of candidates that are currently in clinical trials including LCL-161, SM-406/AT-406, GDC-0512/GDC-0917, and birinapant. As an attempt to improve the proteolytic stability of Smac peptides, we developed the Aza-peptide AzaAla-Val-Pro-Phe-Tyr-NH2 (2). Unlike unmodified peptide Ala-Val-Pro-Phe-Tyr-NH2 (1), analogue (2) exhibited resistance towards proteolytic cleavage by two aminopeptidases; LAP and DPP-IV, while retaining its IAP inhibitory activity. This was due to the altered planar geometry of the P1 residue side chain. Our findings showed that using aza-isosteres of bioactive peptide sequences imbue the residue with imperviousness to proteolysis; underscoring a potential approach for developing a new generation of Smac-derived Aza-peptidomimetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the potency and molecular mechanism of action of YM155, a first-in-class survivin inhibitor that is currently under phase I/II clinical investigations, in various drug-resistant breast cancers including the oestrogen receptor positive (ER(+) ) tamoxifen-resistant breast cancer and the caspase-3-deficient breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-linked inhibitor of apoptosis protein (XIAP) has been identified as a potent regulator of innate immune responses, and loss-of-function mutations in XIAP cause the development of the X-linked lymphoproliferative syndrome type 2 (XLP-2) in humans. Using gene-targeted mice, we show that loss of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3 but proceeds independently of caspase-1/caspase-11 or caspase-8 function. Loss of XIAP results in aberrantly elevated ubiquitylation of RIP1 outside of TNFR complex I. Virally infected Xiap−/− mice present with symptoms reminiscent of XLP-2. Our data show that XIAP controls RIP3-dependent cell death and IL-1β secretion in response to TNF, which might contribute to hyperinflammation in patients with XLP-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-linked inhibitor of apoptosis (XIAP) and other members of the inhibitor of apoptosis (IAP) family can suppress apoptosis induced by a diverse variety of triggers. Functional studies done to date have focused on tissue culture models and adenovirus overexpression of XIAP and other IAP proteins. Here we report the phenotype of an engineered transgenic mouse overexpressing a human IAP, as well as assessing the long-term consequence of IAP overexpression. We document the relative protein expression levels of the endogenous mouse homologue to XIAP, mouse inhibitor of apoptosis (MIAP 3), within thymocyte and T cell subpopulations. The consequence of lymphoid-targeted overexpression of XIAP in transgenic mice suggests a physiological role for the endogenous protein, MIAP3. Xiap-transgenic mice accumulated thymocytes and/or T cells in primary and secondary lymphoid tissue, T cell maturation was perturbed, and transgenic thymocytes resisted a variety of apoptotic triggers both in vitro and in vivo. These observations imply a possible key function for the intrinsic cellular inhibitor XIAP in maintaining the homeostasis of the immune system.