984 resultados para X-Ray Diffraction (XRD)
Resumo:
The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.
Resumo:
Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.
Resumo:
A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more in atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.
Resumo:
The influence of nanodispersed clay on the alpha crystalline structure of polyamide 6 (PA6) was examined in-situ with X-ray diffraction (XRD) between room temperature and melting. In pure PA6 upon annealing the alpha crystalline phase was substituted by an unstable pseudohexagonal phase at 150degreesC, then it transformed into a new stable crystalline structure - high temperature alpha' phase above the transition temperature. However, in PA6/clay nanocomposite (PA6CN), the alpha phase did not present crystalline phase transition on heating. The increase in the annealing temperature only led to continuous intensity variation. The different behaviors were caused by the confined spaces formed by silicate layers, which constrained the mobility of the polymer chains in-between.
Resumo:
The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.
Resumo:
X-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and x-ray absorption spectroscopy (XAS) techniques have been applied to characterize the surface composition and structure of a series of CuO-TiO2-CeO2 catalysts. For a small loading of cerium, ceria was mainly dispersed on the titania surface and a minor amount of CeO2 crystallite appeared. At higher loading of cerium, the CeO2 phase increased and the atomic Ce/Ti ratio values were smaller than the nominal composition, as a consequence of cerium agglomeration. This result suggests that only a fraction of cerium can be spread on the titania surface. For titanium-based mixed oxide, we observed that cerium is found as Ce3+ uniquely on the surface. The atomic Cu/(Ce+Ti) ratio values showed no influence from cerium concentration on the dispersion of copper, although the copper on the surface was shown to be dependent on the cerium species. For samples with a high amount of cerium, XPS analysis indicated the raise of second titanium species due cerium with spin-orbit components at higher binding energies than those presented by Ti4+ in a tetragonal structure. The structural results obtained by XAS are consistent with those obtained by XRD and XPS. (C) 2001 American Vacuum Society.
Resumo:
Results of differential scanning calometry (DSC), x-ray diffraction (XRD), and F-19 nuclear magnetic resonance (NMR) of InF3-based glasses, treated at different temperatures, ranging from glass transition temperature (T-g) to crystallization temperature (T-c), are reported. The main features of the experimental results are as follows. DSC analysis emphasizes several steps in the crystallization process. Heat treatment at temperatures above T-g enhances the nucleation of the first growing phases but has little influence on the following ones. XRD results show that several crystalline phases are formed, with solid state transitions when heated above 680 K, the F-19 NMR results show that the spin-lattice relaxation, for the glass samples heat treated above 638 K, is described by two time constants. For samples treated below this temperature a single time constant T-1 was observed. Measurements of the F-19 spin-lattice relaxation time (T-1), as a function of temperature,made possible the identification of the mobile fluoride ions. The activation energy, for the ionic motion, in samples treated at crystallization temperature was found to be 0.18 +/- 0.01 eV. (C) 1998 American Institute of Physics.
Resumo:
Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 degrees C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.
Resumo:
A reconstruction of Milankovitch to millennial-scale variability of sea-surface temperature (SST) and sea-surface productivity in the Pleistocene mid-latitude North Atlantic Ocean (MIS 16-9) and its relationship to ice sheet instability was carried out on sediments from IODP Site U1313. This reconstruction is based on alkenone and n-alkane concentrations, Uk37' index, total organic carbon (TOC) and carbonate contents, X-Ray diffraction (XRD) data, magnetic susceptibility, and accumulation rates. Increased input of ice-rafted debris (IRD) occurred during MIS 16, 12, and 10, characterized by high concentrations of dolomite, quartz, and feldspars and elevated accumulation rates of terrigenous matter. Minimum input values of terrigenous matter, on the other hand, were determined for MIS 13 and 11. Peak values of dolomite, coinciding with quartz, plagioclase, and kalifeldspar peaks and maxima in long-chain n-alkanes indicative for land plants, are interpreted as Heinrich-like Events related to sudden instability of the Laurentide Ice Sheet during early and late (deglacial) phases of the glacials. The coincidence of increased TOC values with elevated absolute concentrations of alkenones suggest increased glacial productivity, probably due to a more southern position of the Polar Front. Alkenone-based SST reached absolute maxima of about 19°C during MIS 11.3 and absolute minima of <10°C during MIS 12 and 10. Within MIS 11, prominent cooling events (MIS 11.22 and 11.24) occurred. The absolute SST minima recorded directly before and after the glacial maxima MIS 10.2 and 12.2, are related to Heinrich-like Event meltwater pulses, as supported by the coincidence of SST minima and maxima in C37:4 alkenones and dolomite. These sudden meltwater pulses - especially during Terminations IV and V - probably caused a collapse of phytoplankton productivity as indicated by the distinct drop in alkenone concentrations. Ice-sheet disintegration and subsequent surges and outbursts of icebergs and meltwater discharge may have been triggered by increased insolation in the Northern High Latitudes.