768 resultados para X-Linked Intellectual Disability
Resumo:
Le syndrome du X fragile (SXF) est la première cause héréditaire de déficience intellectuelle et également la première cause monogénique d’autisme. Le SXF est causé par l'expansion de la répétition du nucléotide CGG sur le gène FMR1, ce qui empêche l’expression de la protéine FMRP. L’absence du FMRP mène à une altération du développement structurel et fonctionnel de la synapse, ce qui empêche la maturation des synapses induite par l’activité et l’élagage synaptique, qui sont essentiels pour le développement cérébral et cognitif. Nous avons investigué les potentiels reliés aux événements (PRE) évoqués par des stimulations fondamentales auditives et visuelles dans douze adolescents et jeunes adultes (10-22) atteints du SXF, ainsi que des participants contrôles appariés en âge chronologique et développemental. Les résultats indiquent un profil des PRE altéré, notamment l’augmentation de l’amplitude de N1 auditive, par rapport aux deux groupes contrôle, ainsi que l’augmentation des amplitudes de P2 et N2 auditifs et de la latence de N2 auditif. Chez les patients SXF, le traitement sensoriel semble être davantage perturbé qu’immature. En outre, la modalité auditive semble être plus perturbée que la modalité visuelle. En combinaison avec des résultats anatomique du cerveau, des mécanismes biochimiques et du comportement, nos résultats suggèrent une hyperexcitabilité du système nerveux dans le SXF.
Resumo:
Objective: To describe a new syndrome of X-linked myoclonic epilepsy with generalized spasticity and intellectual disability (XMESID) and identify the gene defect underlying this disorder. Methods: The authors studied a family in which six boys over two generations had intractable seizures using a validated seizure questionnaire, clinical examination, and EEG studies. Previous records and investigations were obtained. Information on seizure disorders was obtained on 271 members of the extended family. Molecular genetic analysis included linkage studies and mutational analysis using a positional candidate gene approach. Results: All six affected boys had myoclonic seizures and TCS; two had infantile spasms, but only one had hypsarrhythmia. EEG studies show diffuse background slowing with slow generalized spike wave activity. All affected boys had moderate to profound intellectual disability. Hyperreflexia was observed in obligate carrier women. A late-onset progressive spastic ataxia in the matriarch raises the possibility of late clinical manifestations in obligate carriers. The disorder was mapped to Xp11.2-22.2 with a maximum lod score of 1.8. As recently reported, a missense mutation (1058C>T/P353L) was identified within the homeodomain of the novel human Aristaless related homeobox gene (ARX). Conclusions: XMESID is a rare X-linked recessive myoclonic epilepsy with spasticity and intellectual disability in boys. Hyperreflexia is found in carrier women. XMESID is associated with a missense mutation in ARX. This disorder is allelic with X-linked infantile spasms (ISSX; MIM 308350) where polyalanine tract expansions are the commonly observed molecular defect. Mutations of ARX are associated with a wide range of phenotypes; functional studies in the future may lend insights to the neurobiology of myoclonic seizures and infantile spasms.
Resumo:
The association of marfanoid habitus (MH) and intellectual disability (ID) has been reported in the literature, with overlapping presentations and genetic heterogeneity. A hundred patients (71 males and 29 females) with a MH and ID were recruited. Custom-designed 244K array-CGH (Agilent®; Agilent Technologies Inc., Santa Clara, CA) and MED12, ZDHHC9, UPF3B, FBN1, TGFBR1 and TGFBR2 sequencing analyses were performed. Eighty patients could be classified as isolated MH and ID: 12 chromosomal imbalances, 1 FBN1 mutation and 1 possibly pathogenic MED12 mutation were found (17%). Twenty patients could be classified as ID with other extra-skeletal features of the Marfan syndrome (MFS) spectrum: 4 pathogenic FBN1 mutations and 4 chromosomal imbalances were found (2 patients with both FBN1 mutation and chromosomal rearrangement) (29%). These results suggest either that there are more loci with genes yet to be discovered or that MH can also be a relatively non-specific feature of patients with ID. The search for aortic complications is mandatory even if MH is associated with ID since FBN1 mutations or rearrangements were found in some patients. The excess of males is in favour of the involvement of other X-linked genes. Although it was impossible to make a diagnosis in 80% of patients, these results will improve genetic counselling in families.
Resumo:
We have identified truncating mutations in the human DLG3 ( neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.
Resumo:
We report the identification of a novel mutation at a highly conserved residue within the N-terminal region of spermine synthase (SMS) in a second family with Snyder-Robinson X-linked mental retardation syndrome ( OMIM 309583). This missense mutation, p.G56S, greatly reduces SMS activity and leads to severe epilepsy and cognitive impairment. Our findings contribute to a better delineation and expansion of the clinical spectrum of Snyder-Robinson syndrome, support the important role of the N-terminus in the function of the SMS protein, and provide further evidence for the importance of SMS activity in the development of intellectual processing and other aspects of human development.
Resumo:
We describe three patients with a comparable deletion encompassing SLC25A43, SLC25A5, CXorf56, UBE2A, NKRF, and two non-coding RNA genes, U1 and LOC100303728. Moderate to severe intellectual disability (ID), psychomotor retardation, severely impaired/absent speech, seizures, and urogenital anomalies were present in all three patients. Facial dysmorphisms include ocular hypertelorism, synophrys, and a depressed nasal bridge. These clinical features overlap with those described in two patients from a family with a similar deletion at Xq24 that also includes UBE2A, and in several patients of Brazilian and Polish families with point mutations in UBE2A. Notably, all five patients with an Xq24 deletion have ventricular septal defects that are not present inpatients with a point mutation, which might be attributed to the deletion of SLC25A5. Taken together, the UBE2A deficiency syndrome in male patients with a mutation in or a deletion of UBE2A is characterized by ID, absent speech, seizures, urogenital anomalies, frequently including a small penis, and skin abnormalities, which include generalized hirsutism, low posterior hairline, myxedematous appearance, widely spaced nipples, and hair whorls. Facial dysmorphisms include a wide face, a depressed nasal bridge, a large mouth with downturned corners, thin vermilion, and a short, broad neck. (C) 2010 Wiley-Liss, Inc.
Resumo:
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.
Resumo:
A literature review was conducted aiming to understand the interface between the Intellectual Disability and Mental Health fields and to contribute to mitigating the path of institutionalizing individuals with intellectual deficiencies. The so-called dual diagnosis phenomenon remains underestimated in Brazil but is the object of research and specific public policy internationally. This phenomenon alerts us to the prevalence of mental health problems in those with intellectual disabilities, limiting their social inclusion. The findings reinforce the importance of this theme and indicate possible diagnostic invisibility of the development of mental illness in those with intellectual disabilities in Brazil, which may contribute to sustaining psychiatric institutionalization of this population.
Resumo:
X-linked adrenoleukodystrophy (X-ALD) is an inherited disease with clinical heterogeneity varying from presymptomatic individuals to rapidly progressive cerebral ALD forms. This disease is characterized by increased concentration of very long chain fatty acids (VLCFAs) in plasma and in adrenal, testicular and nervous tissues. Affected individuals can be classified in different clinical settings, according to phenotypic expression and age at onset of initial symptoms. Molecular defects in X-ALD individuals usually result from ABCD1 gene mutations. In the present report we describe clinical data and the ABCD1 gene study in two boys affected with the childhood cerebral form that presented with different symptomatic manifestations at diagnosis. In addition, their maternal grandfather had been diagnosed with Addison's disease indicating phenotypic variation for X-ALD within this family. The mutation p.Trp132Ter was identified in both male patients; additionally, three females, out of eleven family members, were found to be heterozygous after screening for this mutation. In the present report, the molecular analysis was especially important since one of the heterozygous females was in first stages of pregnancy. Therefore, depending on the fetus outcome, if male and p.Trp132Ter carrier, storage of the umbilical cord blood should be recommended as hematopoietic stem cell transplantation could be considered as an option for treatment in the future.
Resumo:
Clinical data from 50 mentally retarded (MR) males in nine X-linked MR families, syndromic and non-specific, with mutations (duplication, expansion, missense, and deletion mutations) in the Aristaless related homeobox gene, ARX, were analysed. Seizures were observed with all mutations and occurred in 29 patients, including one family with a novel myoclonic epilepsy syndrome associated with the missense mutation. Seventeen patients had infantile spasms. Other phenotypes included mild to moderate MR alone, or with combinations of dystonia, ataxia or autism. These data suggest that mutations in the ARX gene are important causes of MR, often associated with diverse neurological manifestations. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
is study examined the social adaptation of children with mild intellectual disability who were either (a) partially integrated into regular primary school classes, or (b) full-time in separate classes, All of the children were integrated in sport and play activities with the whole school. Consistent with previous research, children with intellectual disability were less socially accepted than were a matched group of control children. Children in partially integrated classes received more play nominations than those in separate classes, brit there was no greater acceptance as a best friend. On teachers' reports, disabled children had higher levels of inappropriate social behaviours, but there was no significant difference in appropriate behaviours. Self-assessments by integrated children were more negative than those by children in separate classes, and their peer-relationship satisfaction was lower. Ratings by disabled children of their satisfaction with peer relationships were associated with ratings of appropriate social skills by themselves and their teachers, and with self-ratings of negative behaviour. The study confirmed that partial integration can have negative consequences for children with an intellectual disability.
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
In this study, a PCR multiplex was optimized, allowing the simultaneous analysis of 13 X-chromosome Insertion/deletion polymorphisms (INDELs). Genetic variation observed in Africans, Europeans, and Native Americans reveals high inter-population variability. The estimated proportions of X-chromosomes in an admixed population from the Brazilian Amazon region show a predominant Amerindian contribution (congruent to 41%), followed by European (congruent to 32%) and African (congruent to 27%) contributions. The proportion of Amerindian contribution based on X-linked data is similar to the expected value based on mtDNA and Y-chromosome information. The accuracy for assessing interethnic admixture, and the high differentiation between African, European, and Native American populations, demonstrates the suitability of this INDEL set to measure ancestry proportions in three-hybrid populations, as it is the case of Latin American populations. Am. J. Hum. Biol. 21:707-709, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Objectives. In this study, we aimed to identify ancestry informative haplotypes and make interethnic admixture estimates using X-chromosome markers. Methods. A significant sample (461 individuals) of European, African, and Native American populations was analyzed, and four linkage groups were identified. The data obtained were used to describe the ancestral contribution of populations from four different geographical regions of Brazil (745 individuals). Results. The global interethnic admixture estimates of the four mixed populations under investigation were calculated applying all the 24 insertion/deletion (INDEL) markers. In the North region, a larger Native Americans ancestry was observed (42%). The Northeast and Southeast regions had smaller Native American contribution (27% in both of them). In the South region, there was a large European contribution (46%). Conclusions. The estimates obtained are compatible with expectations for a colonization model with biased admixture between European men (one X chromosome) and Native American and African women (two X chromosomes), so the 24 X-INDEL panel described here can be a useful to make admixture interethnic estimates in Brazilian populations. Am. J. Hum. Biol. 22:849-852,2010. (C) 2010 Wiley-Liss, Inc.