962 resultados para X-LINKED INHERITANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a Brazilian mother and her son affected with mandibulofacial dysostosis, growth and mental retardation, microcephaly, first branchial arch anomalies, and cleft palate. To date only three males and one female, all sporadic cases, with a similar condition have been reported. This article describes the first familial case with this rare condition indicating autosomal dominant or X-linked inheritance. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common complex disorder that shows strong familial aggregation. There is a general increased prevalence of migraine in females compared with males, with recent studies indicating that migraine affects 18% of females compared with 6% of males. This preponderance of females among migraine sufferers coupled with evidence of an increased risk of migraine in first degree relatives of male probands but not in relatives of female probands suggests the possibility of an X-linked dominant gene. We report here the localization of a typical migraine susceptibility locus to the X chromosome. Of three large multigenerational migraine pedigrees two families showed significant excess allele sharing to Xq markers (P = 0.031 and P = 0.012). Overall analysis of data from all three pedigrees gave significant evidence in support of linkage and heterogeneity (HLOD = 3.1). These findings provide conclusive evidence that familial typical migraine is a heterogeneous disorder. We suggest that the localization of a migraine susceptibility locus to the X chromosome could in part explain the increased risk of migraine in relatives of male probands and may be involved in the increased female prevalence of this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, we defined a new syndromic form of X-linked mental retardation in a 4-generation family with a unique clinical phenotype characterized by mild mental retardation, choreoathetosis, and abnormal behavior (MRXS10). Linkage analysis in this family revealed a candidate region of 13.4 Mb between markers DXS1201 and DXS991 on Xp11; therefore, mutation analysis was performed by direct sequencing in most of the 135 annotated genes located in the region. The gene (HADH2) encoding L-3-hydroxyacyl-CoA dehydrogenase II displayed a sequence alteration (c.574 C-->A; p.R192R) in all patients and carrier females that was absent in unaffected male family members and could not be found in 2,500 control X chromosomes, including in those of 500 healthy males. The silent C-->A substitution is located in exon 5 and was shown by western blot to reduce the amount of HADH2 protein by 60%-70% in the patient. Quantitative in vivo and in vitro expression studies revealed a ratio of splicing transcript amounts different from those normally seen in controls. Apparently, the reduced expression of the wild-type fragment, which results in the decreased protein expression, rather than the increased amount of aberrant splicing fragments of the HADH2 gene, is pathogenic. Our data therefore strongly suggest that reduced expression of the HADH2 protein causes MRXS10, a phenotype different from that caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, which is a neurodegenerative disorder caused by missense mutations in this multifunctional protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common complex disorder that shows strong familial aggregation. There is a general increased prevalence of migraine in females compared with males, with recent studies indicating that migraine affects 18% of females compared with 6% of males. This preponderance of females among migraine sufferers coupled with evidence of an increased risk of migraine in first degree relatives of male probands but not in relatives of female probands suggests the possibility of an X-linked dominant gene. We report here the localization of a typical migraine susceptibility locus to the X chromosome. Of three large multigenerational migraine pedigrees two families showed significant excess allele sharing to Xq markers (P = 0.031 and P = 0.012). Overall analysis of data from all three pedigrees gave significant evidence in support of linkage and heterogeneity (HLOD = 3.1). These findings provide conclusive evidence that familial typical migraine is a heterogeneous disorder. We suggest that the localization of a migraine susceptibility locus to the X chromosome could in part explain the increased risk of migraine in relatives of male probands and may be involved in the increased female prevalence of this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a copy of an article published in the Human gene therapy © 2012 copyright Mary Ann Liebert, Inc.; Human gene therapy is available online at: http://online.liebertpub.com.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are a growing class of small RNAs ( about 22 nt) that play crucial regulatory roles in the genome by targeting mRNAs for cleavage or translational repression. Most of the identified miRNAs are highly conserved among species, indicating

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: MicroRNAs (miRNAs), which are small, non-coding RNAs approximately 21-nucleotides in length, have become a major focus of research in molecular biology. Mammalian miRNAs are proposed to regulate approximately 30% of all protein-coding genes. P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Sex controls have been performed in some farmed fish species because of significant growth differences between females and males. In yellow catfish (Pelteobagrus fulvidraco), adult males are three times larger than female adults. In this study, six Y- and X-linked amplified fragment length polymorphism fragments were screened by sex-genotype pool bulked segregant analysis and individual screening. Interestingly, sequence analysis identified two pairs of allelic genes, Pf33 and Pf62. Furthermore, the cloned flanking sequences revealed several Y- and X-specific polymorphisms, and four Y-linked or X-linked sequence characterized amplified region (SCAR) primer pairs were designed and converted into Y- and X-linked SCAR markers. Consequently, these markers were successfully used to identify genetic sex and YY super-males, and applied to all-male population production. Thus, we developed a novel and simple technique to help commercial production of YY super-males and all-male populations in the yellow catfish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Echovirus meningoencephalitis and polymyositis are classical complications of X-linked agammaglobulinemia (1). The treatment of meningoencephalitis is troublesome since intravenous (2), intrathecal (3) and intraventricular (4) administration of gammaglobulins have been reported successful, but failure also occurred in some cases (5). We report our experience of high dose intravenous treatment.