933 resultados para X inactive specific transcript protein
Resumo:
During initial development, both X chromosomes are active in females, and one of them must be silenced at the appropriate time in order to dosage compensate their gene expression levels to male counterparts. Silencing involves epigenetic mechanisms, including histone deacetylation. Major X chromosome inactivation (XCI) in bovine occurs between hatching and implantation, although in vitro culture conditions might disrupt the silencing process, increasing or decreasing X-linked gene expression. In this study, we aimed to address the roles of histone deacetylase inhibition by trichostatin A (TSA) on female preimplantation development.We tested the hypothesis that by enhancing histone acetylation, TSA would increase the percentage of embryos achieving 16-cell stage, reducing percentage of embryos blocked at 8-cell stage, and interfere with XCI in IVF embryos. We noticed that after TSA treatment, acetylation levels in individual blastomeres of 8-16 cell embryos were increased twofold on treated embryos, and the samewas detected for blastocysts. Changes among blastomere levels within the same embryo were diminished on TSA group, as low-acetylated blastomeres were no longer detected. The percentage of embryos that reached the 5th cleavage cycle 118 h after IVF, analyzed by Hoechst staining, remained unaltered after TSA treatment. Then, we assessed XIST and G6PD expression in individual female bovine blastocysts by quantitative real-time PCR. Even though G6PD expression remained unaltered after TSA exposure, XIST expression was eightfold decreased, and we also detected a major decrease in the percentage of blastocysts expressing detectable XIST levels after TSA treatment. Based on these results, we conclude that HDAC is involved on XCI process in bovine embryos, and its inhibition might delay X chromosome silencing and attenuate aberrant XIST expression described for IVF embryos. © 2013 Society for Reproduction and Fertility.
Resumo:
During early mammalian embryogenesis, one of the two X chromosomes in somatic cells of the female becomes inactivated through a process that is thought to depend on a unique initiator region, the X-chromosome inactivation center (Xic). The recently characterized Xist sequence (X-inactive-specific transcript) is thought to be a possible candidate for Xic. In mice a further genetic element, the X chromosome-controlling element (Xce), is also known to influence the choice of which of the two X chromosomes is inactivated. We report that a region of the mouse X chromosome lying 15 kb distal to Xist contains several sites that show hypermethylation specifically associated with the active X chromosome. Analysis of this region in various Xce strains has revealed a correlation between the strength of the Xce allele carried and the methylation status of this region. We propose that such a region could be involved in the initial stages of the inactivation process and in particular in the choice of which of the two X chromosomes present in a female cell will be inactivated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The coagulation factor IX gene (179), the hypoxanthine phosphoribosyl transferase 1 gene (HPRT1), and the X-inactive specific transcript gene (XIST) were physically assigned in cattle to analyze chromosomal breakpoints on BTAX recently identified by radiation hybrid (RH) mapping experiments. Whereas the FISH assignment of XIST indicates a similar location on the q-arm of the human and cattle X chromosomes, the locus of HPRT1 supported the assumption of a chromosome rearrangement between the distal half of the q-arm of HSAX and the p-arm of BTAX identified by RH mapping. F9 previously located on the Cl-arm of BTAX was assigned to the p-arm of BTAX using RH mapping and FISH. The suggested new position of F9 close to HPRT I supports the homology between HSAXq and BTAXp. The F9 locus corresponds with the gene order found in the homologous human chromosome segment. XIST was assigned on BTAXq23, HPRT1 and F9 were mapped to BTAXp22, and the verification of the location of F9 in a 5000 rad cattle-hamster whole genome radiation hybrid panel linked the gene to markers URB10 and HPRT1. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
The Golgi complex is a central organelle of the secretory pathway, responsible for a range of post-translational modifications, as well as for membrane traffic to the plasma membrane and to the endosomal-lysosomal pathway. In addition, this organelle has roles in cell migration, in the regulation of traffic, and as a mitotic check point. The structure of the Golgi complex is highly dynamic and able to respond to the amount of cargo being transported and the stage of the cell cycle. The Golgi proteome reflects the functions and structure of this organelle, and can be divided into three major groups: the Golgi resident proteins (e.g. modification enzymes), the Golgi matrix proteins (involved in structure and tethering events), and trafficking proteins (e.g. vesicle coat proteins and Rabs). The Golgi proteome has been studied on several occasions, from both rat liver and mammary gland Golgi membranes using proteomic approaches, but still little more than half of the estimated Golgi proteome is known. Nevertheless, methodological improvements and introduction of shotgun proteomics have increased the number of identified proteins, and especially the number of identified transmembrane proteins. Cartilage, even though not a typical tissue in which to study membrane traffic, secretes large amounts of extracellular matrix proteins that are extensively modified, especially by amino acid hydroxylation, glycosylation and sulfation. Furthermore, the cartilage ECM contains several, large oligomeric proteins (such as collagen II) that are difficult to assemble and transport. Indeed, cartilage has been shown to be susceptible to changes both in secretory pathway (e.g. the COPII coat assembly) and in post-translational modifications (e.g. heparan sulfate formation). Dental follicle, and the periodontal ligament (PDL) that it forms, are another type of connective tissue, and they have a role in anchoring teeth to bone. This anchorage is achieved by numerous matrix fibres that connect the bone matrix with the cementum. These tissues have in common the secretion of large matrix molecules. In this study the Golgi proteome was analysed from purified, stacked Golgi membranes isolated from rat liver. The identified, extensive proteome included a protein similar to Ab2-095, or Golgi protein 49kDa (GoPro49), which was shown to localise to the Golgi complex as an EGFP fusion protein. Surprisingly, in situ hybridisation showed the GoPro49 expression to be highly restricted to different mesenchymal tissues, especially in cartilage, and this expression pattern was clearly developmentally regulated. In addition to cartilage, GoPro49 was also expressed in the dental follicle, but was not observed in the mature PDL. Importantly, GoPro49 is the first specific marker for the dental follicle. Endogenous GoPro49 protein co-localised with β-COP in both chondrosarcoma and primary dental follicle cell lines. The COPI staining in these cells was highly dynamic, showing a number of tubules. This may reflect the type of secretory cargo they secrete. Currently GoPro49 is the only Golgi protein with such a restricted expression pattern.
Resumo:
Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus non-pathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-beta-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-beta-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-beta-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-beta-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-beta-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-beta-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.
Resumo:
A transmembrane protein gene, c1orf37-dup, was identified as a young gene specific to humans. It was derived from the conserved c1orf37 gene through retroposition after the divergence of human and chimpanzee. This gene has evolved rapidly driven by positi
Resumo:
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry is difficult for the characterization of noncovalent complexes hitherto because of the limitations in acidic matrix, sample preparation, laser-induced polymerization and adduct formation with matrix. Under our experimental conditions, sinapinic acid is used as a matrix, the specific noncovalent interactions of protein with fullerenols were observed by MALDI mass spectrometry. Some mass spectrometric features, such as mass shifts, broad adduct peaks and stoichiometries, showed that the specific non-covalent complexes between protein and fullerenols have been formed at a ratio of 1 : 4 for hemoglobin-fullerenols or 1 : 1 for myoglobin-fullerenols. The results implied that fullereneols could be used to protect partly hemoglobin from decomposition in acidic media, and therefore, it is possible to realize the molecular weight determination of a quaternary protein by MALDI mass spectrometry via the addition of specific organic compound in the matrix.
Resumo:
Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.
Resumo:
Recently, a family of muscle-specific regulatory factors that includes myogenin, myoD, myf-5, and MRF-4 has been identified. They share a high degree of homology within a region that contains a basic and helix-loop-helix domain. Transfection of many non-muscle cell types with any one of these genes results in the activation of the entire myogenic program. To explore the mechanism through which myogenin regulates myogenesis, we have prepared antibodies against peptides specific to myogenin. Using these antibodies we show that myogenin is a 32 Kd phospho-protein which is localized to the nuclei of muscle cells. In vitro, myogenin oligomerizes with the ubiquitous enhancer binding factor E12, and acquires high affinity for an element of the core of the muscle creatine kinase (MCK) enhancer that is conserved among many muscle-specific genes. Myogenin synthesized in BC$\sb3$H1 and C2 muscle cell lines also binds to the same site in the enhancer. However, the MCK enhancer is not activated in 10T1/2 fibroblasts which have been transfected with a constitutive myogenin expression vector until growth factors have been removed from the media. This result indicates that mitogenic signals block the actions of myogenin.. Mutagenesis of the myogenin/E12 binding site in the MCK enhancer abolishes binding of the hetero-oligomer and prevents trans-activation of the enhancer by myogenin. By site directed mutagenesis of myogenin we have shown that the basic region consists of three clusters of basic residues, two of which are required for binding and activation of the myogenic program. Myogenic activation, but not DNA binding, is lost when the 10 residue region between the two required basic clusters is substituted with the corresponding region from E12, which also contains a similar basic and helix-loop-helix domain. Functional revertants of this substitution mutant have identified two amino acids which confer muscle specificity. The properties of myogenin suggest that it functions as a sequence-specific DNA binding factor that interacts directly with muscle-specific genes during myogenesis and contains within its basic domain a region which imparts myogenic activation and is separable from DNA binding. ^
Resumo:
The 3' cleavage generating non-polyadenylated animal histone mRNAs depends on the base pairing between U7 snRNA and a conserved histone pre-mRNA downstream element. This interaction is enhanced by a 100 kDa zinc finger protein (ZFP100) that forms a bridge between an RNA hairpin element upstream of the processing site and the U7 small nuclear ribonucleoprotein (snRNP). The N-terminus of Lsm11, a U7-specific Sm-like protein, was shown to be crucial for histone RNA processing and to bind ZFP100. By further analysing these two functions of Lsm11, we find that Lsm11 and ZFP100 can undergo two interactions, i.e. between the Lsm11 N-terminus and the zinc finger repeats of ZFP100, and between the N-terminus of ZFP100 and the Sm domain of Lsm11, respectively. Both interactions are not specific for the two proteins in vitro, but the second interaction is sufficient for a specific recognition of the U7 snRNP by ZFP100 in cell extracts. Furthermore, clustered point mutations in three phylogenetically conserved regions of the Lsm11 N-terminus impair or abolish histone RNA processing. As these mutations have no effect on the two interactions with ZFP100, these protein regions must play other roles in histone RNA processing, e.g. by contacting the pre-mRNA or additional processing factors.
Inactive Matrix Gla-Protein Is Associated With Arterial Stiffness in an Adult Population-Based Study
Resumo:
Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.
Resumo:
OBJECTIVE Renal resistive index (RRI) varies directly with renal vascular stiffness and pulse pressure. RRI correlates positively with arteriolosclerosis in damaged kidneys and predicts progressive renal dysfunction. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular (CV) markers, CV outcomes and mortality. In this study we hypothesize that increased RRI is associated with high levels of dp-ucMGP. DESIGN AND METHOD We recruited participants via a multi-center family-based cross-sectional study in Switzerland exploring the role of genes and kidney hemodynamics in blood pressure regulation. Dp-ucMGP was quantified in plasma samples by sandwich ELISA. Renal doppler sonography was performed using a standardized protocol to measure RRIs on 3 segmental arteries in each kidney. The mean of the 6 measures was reported. Multiple regression analysis was performed to estimate associations between RRI and dp-ucMGP adjusting for sex, age, pulse pressure, mean pressure, renal function and other CV risk factors. RESULTS We included 1035 participants in our analyses. Mean values were 0.64 ± 0.06 for RRI and 0.44 ± 0.21 (nmol/L) for dp-ucMGP. RRI was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, pulse pressure, mean pressure, heart rate, renal function, low and high density lipoprotein, smoking status, diabetes, blood pressure and cholesterol lowering drugs, and history of CV disease (P < 0.001). CONCLUSIONS RRI is independently and positively associated with high levels of dp-ucMGP after adjustment for pulse pressure and common CV risk factors. Further studies are needed to determine if vitamin K supplementation can have a positive effect on renal vascular stiffness and kidney function.
Resumo:
G proteins regulate intracellular signaling by coupling a cycle of guanine nucleotide binding and hydrolysis to transient changes of cellular functions. The mechanisms that control the recycling of transducin, the “pace-setting” G protein that regulates mammalian phototransduction, are unclear. We show that a novel retinal specific RGS-motif protein specifically binds to an intermediate conformation involved in GTP hydrolysis by transducin and accelerates phosphate release and the recycling of transducin. This specific interaction further rationalizes the kinetics of the phototransduction cascade and provides a general hypothesis to explain the mechanism of interaction of RGS proteins with other G proteins.