838 resultados para X chromosome linked disorder


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionary function of X chromosome inactivation is thought to be dosage compensation. However, there is, at present, little evidence to suggest that most X chromosome-linked genes require such compensation. Another view--that X chromosome inactivation may be related to sex determination--is examined here. Consider a hypothetical DNA sequence regulating a major structural gene concerned with the determination of maleness. If this regulatory sequence occurs in both X and Y chromosomes and if its copy number in the Y chromosome is significantly greater than in the X chromosome, then the male-determining properties of the Y chromosome could be attributed to this higher copy number. On the other hand, if the Y chromosome has the same copy number of this sequence as the X chromosome, it is difficult to see how determination of two sexes would occur under such circumstances because XX and XY genomes would then be indistinguishable in this regard. Such a situation seems to occur in the human species with respect to the banded krait minor satellite, a repetitious DNA sequence associated with sex determination. This apparent difficulty may be resolved if X chromosome inactivation renders regulatory as well as structural genes nonfunctional and thereby brings about a significant reduction in the effective copy number of X chromosome-linked DNA sequences concerned with sex determination. It is suggested that X chromosome inactivation brings about, in this manner, a critical inequality between XX and XY embryos and that sex determination in humans is a consequence of this inequality. An analogous situation appears to exist in certain insects in which inactivation of a haploid set of chromosomes (and presumably, therefore, a 50% reduction in the effective copy number of most genes) is associated with maleness. If this line of reasoning is correct, it would suggest that sex determination may be the primary function of X chromosome inactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common complex disorder, currently classified into two main subtypes, migraine with aura (MA) and migraine without aura (MO). The strong preponderance of females to males suggests an X-linked genetic component. Recent studies have identified an X chromosomal susceptibility region (Xq24-q28) in two typical migraine pedigrees. This region harbours a potential candidate gene for the disorder, the serotonin receptor 2C (5-HT2C) gene. This study involved a linkage and association approach to investigate two single nucleotide variants in the 5-HT2C gene. In addition, exonic coding regions of the 5-HT2C gene were also sequenced for mutations in X-linked migraine pedigrees. Results of this study did not detect any linkage or association, and no disease causing mutations were identified. Hence, results for this study do not support a significant role of the 5-HT 2C gene in migraine predisposition. © 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci. An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1×10−5) ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92×10−4), whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65×10−4). Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women’s Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05). Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63×10−5) is located within the 5′UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Ankylosing spondylitis (AS) affects 0.25-1.0% of the population, and its etiology is incompletely understood. Susceptibility to this highly familial disease (λ(s) = 58) is primarily genetically determined. There is a significant sex bias in AS, and there are differences in recurrence risk to the offspring of affected mothers and fathers, suggesting that there may be an X-linked recessive effect. We undertook an X- chromosome linkage study to determine any contribution of the X-chromosome to AS susceptibility. Methods. A linkage study of the X-chromosome using 234 affected sibling pairs was performed to investigate this hypothesis. Results. No linkage of the X-chromosome with susceptibility to AS was found. Model- free multipoint linkage analysis strongly excluded any significant genetic contribution (λ ≥1.5) to AS susceptibility encoded on the X-chromosome (logarithm of odds [LOD] <-2.0). Smaller genetic effects (A ≥1.3) were also found to be unlikely (LOD <-1.0). Conclusion. The sex bias in AS is not explained by X-chromosome-encoded genetic effects. The disease model best explaining the sex bias in occurrence and transmission of AS is a polygenic model with a higher susceptibility threshold in females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In an attempt to clarify the clonality and genetic relationships that are involved in the tumorigenesis of uterine leiomyomas, we used a total of 43 multiple leiomyomas from 14 patients and analyzed the allelic status with 15 microsatellite markers and X chromosome inactivation analysis.Study design: We have used a set of 15 microsatellite polymorphism markers mapped on 3q, 7p, 11, and 15q by automated analysis. The X chromosome inactivation was evaluated by the methylation status of the X-linked androgen receptor gene.Results: Loss of heterozygosity analysis showed a different pattern in 7 of the 8 cases with allelic loss for at least 1 of 15 microsatellite markers that were analyzed. A similar loss of heterozygosity findings at 7p22-15 was detected in 3 samples from the same patient. X chromosome inactivation analysis demonstrated the same inactivated allele in all tumors of the 9 of 12 informative patients;. different inactivation patterns were observed in 3 cases.Conclusion: Our data support the concept that uterine leiomyomas are derived from a single cell but are generated independently in the uterus. Loss of heterozygosity findings at 7p22-15 are consistent with previous data that suggested the relevance of chromosomal aberrations at 7p that were involved in individual uterine leiomyomas. (C) 2005 Mosby, Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonsyndromic clefts of the lip and/or palate are common birth defects with a strong genetic component. Based on unequal gender ratios for clefting phenotypes, evidence for linkage to the X chromosome and the occurrence of several X-linked clefting syndromes, we investigated the role of skewed X chromosome inactivation (XCI) in orofacial clefts. Our samples consisted of female monozygotic (MZ) twins (n = 8) and sister pairs (n = 152) discordant for nonsyndromic clefting. We measured the XCI pattern in peripheral blood lymphocyte DNA using a methylation based androgen receptor gene assay. Skewing of XCI was defined as the deviation in inactivation pattern from a 50:50 ratio. Our analysis revealed no significant difference in the degree of skewing between twin pairs (P = 0.3). However, borderline significant differences were observed in the sister pairs (P = 0.02), with the cleft lip with cleft palate group showing the most significant result (P=0.01). We did not find evidence for involvement of skewed XCI in the discordance for clefting in our sample of female MZ twins. However, results from the paired sister study suggest the potential contribution of skewed XCI to orofacial clefting, particularly cleft lip and palate. (C) 2007 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus × laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno’s hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In females, most genes on the X chromosome are generally assumed to be transcriptionally silenced on the inactive X as a result of X inactivation. However, particularly in humans, an increasing number of genes are known to “escape” X inactivation and are expressed from both the active (Xa) and inactive (Xi) X chromosomes; such genes reflect different molecular and epigenetic responses to X inactivation and are candidates for phenotypes associated with X aneuploidy. To identify genes that escape X inactivation and to generate a first-generation X-inactivation profile of the X, we have evaluated the expression of 224 X-linked genes and expressed sequence tags by reverse-transcription–PCR analysis of a panel of multiple independent mouse/human somatic cell hybrids containing a normal human Xi but no Xa. The resulting survey yields an initial X-inactivation profile that is estimated to represent ≈10% of all X-linked transcripts. Of the 224 transcripts tested here, 34 (three of which are pseudoautosomal) were expressed in as many as nine Xi hybrids and thus appear to escape inactivation. The genes that escape inactivation are distributed nonrandomly along the X; 31 of 34 such transcripts map to Xp, implying that the two arms of the X are epigenetically and/or evolutionarily distinct and suggesting that genetic imbalance of Xp may be more severe clinically than imbalance of Xq. A complete X-inactivation profile will provide information relevant to clinical genetics and genetic counseling and should yield insight into the genomic and epigenetic organization of the X chromosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effect on female viability of trans-heterozygous combinations of X-chromosome deficiencies and Sxt-(fl), a null allele of Sex-lethal. Twentyfive deficiencies, which together covered 80% of the X chromosome, were tested. Seven of these trans-heterozygous combinations caused significant levels of female lethality. Two of the seven interacting deficiencies include the previously known sex determination genes sans fille and sisterless-a. Four of the remaining uncover X-chromosomal regions that were not hitherto known to contain sex determination genes. These newly identified regions are defined by deficiencies Df(1)RA2 (7D10; 8A4-5), Df(1)KA14 (7F1-2; 8C6), Df(1)C52 (8E; 9C-D) and Df(1)N19 (17A1; 18A2). These four deficiencies were characterized further to determine whether it was the maternal or zygotic dosage that was primarily responsible for the observed lethality of female embryos, daughterless and extra macrochaetae, two known regulators of Sxl, influence the interaction of these deficiencies with Sxl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m(5)C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m(5)C in Xi (similar to3.6 x 10(7)) than in all the remaining chromosomes put together (similar to2.1 x 10(7)). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.