926 resultados para Wrist Posture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Supporting the forearm on the work surface during keyboard operation may increase comfort, decrease muscular load of the neck and shoulders, and decrease the time spent in ulnar deviation. Wrist rests are used widely in the workplace and are more commonly being incorporated in keyboard design. The aim of this study was to examine the effect of wrist rest use on wrist posture during forearm Support. A laboratory based, experimental study was conducted (subjects n = 15) to examine muscle activity and wrist Postures during keyboard and mouse tasks in each of' two conditions; wrist rest and no wrist rest. There were no significant differences for right wrist flexion/extension between use of a wrist rest and no wrist rest for keyboard or mouse use. Left wrist extension was significantly higher without a wrist rest than with a wrist rest during keyboard use (df = 14; t = 2.95; p = 0.01; d = 0.38). No differences with respect to use of a wrist rest were found for the left or right hand for ulnar deviation For keyboard or mouse use. There were no differences in muscle activity between the test conditions for keyboard use. Relevance to industry Wrist rests are used widely in the workplace and are more commonly being incorporated in keyboard design. Use of a wrist rest in conjunction with forearm support when using a conventional desk does not appear to have any impact on wrist posture or muscle activity during keyboard use. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forearm support during keyboard use has been reported to reduce neck and shoulder muscle activity and discomfort. However, the effect of forearm support on wrist posture has not been examined. The aim of this study was to examine the effect of 3 different postures during keyboard use: forearm support, wrist support and floating. The floating posture (no support) was used as the reference condition. A wrist rest was present in all test conditions. Thirteen participants completed 20 min wordprocessing tasks in each of the test conditions. Electromyography was used to monitor neck, shoulder and forearm muscle activity. Bilateral and overhead video cameras recorded left and right wrist extension, shoulder and elbow flexion and radial and ulnar deviation. The forearm support condition resulted in significantly less ulnar deviation (

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tree planting is one of the most physically demanding occupations in Canada and as a result, tree planters are at an elevated risk of injury, specifically at the wrist. Wrist injuries develop on account of the highly repetitive nature of the job, as well as other musculoskeletal risk factors including non-neutral wrist postures and high impact forces sustained at the wrist during shovel-ground impact. As a result, wrist brace use has become common among planters, in an effort to limit deviated wrist postures while also providing enhanced stability at the wrist. The external stability provided by a wrist brace is thought to reduce the muscular effort required to provide stiffness at the wrist during shovel-ground impact. Since these prospective benefits have not been formally investigated, the purpose of this study was to determine the effect of a wrist brace on wrist posture, muscle activity, and joint rotational stiffness about the wrist joint (for two degrees of freedom: flexion/extension and ulnar/radial deviation). We hypothesized that the brace would promote more neutrally aligned wrist angles, and that muscle activity and joint rotational stiffness would also decrease when participants wore the brace. Fourteen tree planters with at least one season of experience were recruited to complete two planting conditions in a laboratory setting: one condition while wearing the brace (with brace, WB) and one condition without the brace (no brace, NB). The results from this study showed that at shovel-ground impact muscle activity trended towards increasing in three muscles when participants wore the brace. Additionally, wrist angles improved about the flexion/extension axis of rotation while increasing in deviation about the ulnar/radial axis of rotation when participants wore the brace. Joint rotational stiffness increased when participants wore the wrist brace. Participants from this study indicated difficulty gripping the shovel due to the bulk of the wrist brace, and this feature is discussed with possible suggestions for future iterations of design. In addition to grip diameter this analysis also prompts the suggestion that hand length and experience should also be considered in the design of tree planting tools, specifically an ergonomic aid such as a wrist brace.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivo: determinar la prevalencia en los últimos 6 meses de los síntomas de cuello y miembro superior además de sus factores asociados, en trabajadores de una entidad financiera call center en el periodo comprendido de abril a octubre del año 2009. Métodos: se realizó un análisis descriptivo trasversal, a través de la aplicación de un cuestionario de morbilidad sentida que abarcó aspectos demográficos, antecedentes personales y antecedentes laborales. La presencia de los síntomas se documentó en una tabla donde se confrontaron los síntomas osteomusculares y los segmentos afectados en los últimos 6 meses. Adicionalmente se les pidió a los sujetos identificar la postura más frecuente durante su trabajo mediante un diagrama. Resultados: los síntomas más prevalentes fueron dolor en la muñeca derecha (0,44; IC 95% 0,37 – 0,51), dolor en el cuello (0,43; IC95% 0,36 – 0,50), rigidez en el cuello (0,33; IC95% 0,26 – 0,40) y dolor en la mano derecha (0,36; IC95% 0,29 – 0,43). Se encontraron diferencias estadísticamente significativas en cuanto al género en la presencia de dolor en muñeca derecha (26,1% hombres contra 73,9% mujeres; p=0,005), dolor en mano derecha (25% hombres versus 75% mujeres; p=0,008), síntomas neurológicos en mano derecha (19,4% versus 80,6%; p=0,001) y dolor en hombro derecho (26,3% hombres versus 73,7% mujeres; p=0,048). También se evidencio una diferencia estadísticamente significativa en la prevalencia del síntoma dolor en muñeca derecha según el auto reporte de mayor exigencia en el desempeño (85,2% con la percepción de mayor exigencias, versus 14,8% en los sujetos que no; p=0,020). Además una diferencia estadísticamente significativa con mayor presencia de síntomas en muñecas y manos en sujetos con postura en dorsiflexión de de las mismas (muñeca derecha 72,8%, p=0,001; muñeca izquierda 43,5%, p=0,020; mano derecha 62%, p=0,003). Conclusión: después de realizar el estudio se encontró como principal síntoma el dolor, localizado en: la muñeca derecha, el cuello, la mano derecha y el hombro derecho, con diferencias mayores para el género femenino según la postura de las muñecas, lo que es compatible con las condiciones de trabajo y la respuesta fisiológica a estas condiciones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Based on self-reported measures, sedentary time has been associated with chronic disease and mortality. This study examined the validity of the wrist-worn GENEactiv accelerometer for measuring sedentary time (i.e. sitting and lying) by posture classification, during waking hours in free living adults. DESIGN Fifty-seven participants (age=18-55 years 52% male) were recruited using convenience sampling from a large metropolitan Australian university. METHODS Participants wore a GENEActiv accelerometer on their non-dominant wrist and an activPAL device attached to their right thigh for 24-h (00:00 to 23:59:59). Pearson's Correlation Coefficient was used to examine the convergent validity of the GENEActiv and the activPAL for estimating total sedentary time during waking hours. Agreement was illustrated using Bland and Altman plots, and intra-individual agreement for posture was assessed with the Kappa statistic. RESULTS Estimates of average total sedentary time over 24-h were 623 (SD 103) min/day from the GENEActiv, and 626 (SD 123) min/day from the activPAL, with an Intraclass Correlation Coefficient of 0.80 (95% confidence intervals 0.68-0.88). Bland and Altman plots showed slight underestimation of mean total sedentary time for GENEActiv relative to activPAL (mean difference: -3.44min/day), with moderate limits of agreement (-144 to 137min/day). Mean Kappa for posture was 0.53 (SD 0.12), indicating moderate agreement for this sample at the individual level. CONCLUSIONS The estimation of sedentary time by posture classification of the wrist-worn GENEActiv accelerometer was comparable to the activPAL. The GENEActiv may provide an alternative, easy to wear device based measure for descriptive estimates of sedentary time in population samples

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single subject longevity study is presented as a case study for the Medical Device Partnering Program (MDPP). The MDPP supports the development of cutting-edge medical devices and assistive technologies, through unique collaborations between researchers, industry, clinical end-users and government. The study aimed to identify what effect the innersole has on specific muscles that may influence stability and whether the innersole had any influence on gait. Three tests were conducted; a standard gait test, dynamic balance test and a standing balance test. Results from the kinematic analysis showed reduced variability in post testing results when compared to pre testing results. Reductions in muscle activation levels were also found across all tests. Further testing with a larger sample size is required to determine if these effects are due to the innersole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Evaluation of scapular posture is a fundamental component in the clinical evaluation of the upper quadrant. This study examined the intrarater reliability of scapular posture ratings. Methods: A test-retest reliability investigation was undertaken with one week between assessment sessions. At each session physical therapists conducted visual assessments of scapula posture (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane). These five plane ratings were performed for four different scapular posture perturbating conditions (rest, isometric shoulder; flexion, abduction, and external rotation). Results. A total of 100 complete scapular posture ratings (50 left, 50 right) were undertaken at each assessment. The observed agreement between the test and retest postural plane ratings ranged from 59% to 87%; 16 of the 20 plane-condition combinations exceeded 75% observed agreement. Kappa (and prevalence adjusted bias adjusted kappa) values were inconsistent across the postural planes and perturbating conditions. Conclusions: This investigation generally revealed fair to moderate intrarater reliability in the rating of scapular posture by visual inspection. However, enough disagreement between assessments was present to warrant caution when interpreting perceived changes in scapula position between longitudinal assessments using visual inspection alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. This paper aimed to identify condition-specific patient-reported outcome measures used in clinical trials among people with wrist osteoarthritis and summarise empirical peer-reviewed evidence supporting their reliability, validity, and responsiveness to change. Methods. A systematic review of randomised controlled trials among people with wrist osteoarthritis was undertaken. Studies reporting reliability, validity, or responsiveness were identified using a systematic reverse citation trail audit procedure. Psychometric properties of the instruments were examined against predefined criteria and summarised. Results. Thirteen clinical trials met inclusion criteria. The most common patient-reported outcome was the disabilities of the arm, shoulder, and hand questionnaire (DASH). The DASH, the Michigan Hand Outcomes Questionnaire (MHQ), the Patient Evaluation Measure (PEM), and the Patient-Reported Wrist Evaluation (PRWE) had evidence supporting their reliability, validity, and responsiveness. A post-hoc review of excluded studies revealed the AUSCAN Osteoarthritis Hand Index as another suitable instrument that had favourable reliability, validity, and responsiveness. Conclusions. The DASH, MHQ, and AUSCAN Osteoarthritis Hand Index instruments were supported by the most favourable empirical evidence for validity, reliability, and responsiveness. The PEM and PRWE also had favourable empirical evidence reported for these elements. Further psychometric testing of these instruments among people with wrist osteoarthritis is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Magnetic resonance imaging (MRI) is being increasingly utilized to define pathology and guide treatment in patients presenting with wrist pain. The clinical relevance of MRI identified or confirmed pathology has not been established, and the prevalence of asymptomatic MRI pathology is not known. METHODS: Twenty volunteers with no previous wrist injury or symptoms underwent bilateral MRI wrist studies in this exploratory diagnostic study. The scans were reported by an experienced musculoskeletal radiologist and an experienced wrist surgeon, with a consensus reached on each report. RESULTS: There were 3.15 positive MRI findings per wrist. There were 126 positive findings (range 1-6 per wrist). Sixty-eight ganglia were identified. Eleven ligament tears or perforations were also identified. Increased joint fluid was seen at many sites, most frequently adjacent to the piso-triquetral joint. CONCLUSION: The accuracy of MRI in identifying triangular fibrocartilage complex tears, intercarpal ligament tears and carpal bone osteonecrosis is rapidly being refined. Positive MRI findings are common and may be coincidental in patients with wrist pain. MRI findings need to be correlated closely with clinical examination and history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.