9 resultados para Wrasses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From a genetic resources viewpoint, emerging aquaculture species and species groups are examined mainly in terms of food use. In addition, we include species that are becoming increasingly important for biodiversity conservation and related ecotourism aspects. Together with ornamental fish species, we argue that these species are facing increasing vulnerability and warrant attention. Our intention is to raise awareness of the potential for increasing production and revenues from emerging species/species groups with an emphasis on an underlying link to biodiversity conservation and ecosystem preservation, and how this information will inform policy on access to the genetic resources and the sharing of benefits derived from their use. For food purposes, the fastest growing aquaculture sector is mariculture, and within this sector groupers and wrasses are considered to be the most important because they cater to the relatively lucrative live food fish restaurant trade (LFFRT), which is rapidly expanding in selected South-East Asian countries. In the Asian region, ecotourism is an emerging sector and a prominent fish group for this purpose is considered to be mahseer. A number of mahseer species are culturally and commercially important and are often seen as a group of indigenous species that are suitable for aquaculture. This review summarizes much of the limited information related to the patterns of use and exchange of genetic resources on emerging aquatic species/species groups, with particular reference to Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Labroides dimidiatus, is one of several species of cleaner wrasses found on coral reefs from Eastern Africa and the Red Sea to French Polynesia, for the first time from Iran (Persian Gulf, Kish Island). Like other cleaner wrasses, it eats parasites and dead tissue off larger fishes’ skin in a mutualistic relationship that provides food and protection for the wrasse, and considerable health benefits for the other fishes. Some fish mimic cleaner wrasses. For example, a species of blenny called Aspidontus taeniatus has evolved the same behavior to tear small pieces of flesh from bigger fish. Cleaner wrasses are usually found at cleaning stations. Cleaning stations are occupied by different units of cleaner wrasses, such as a group of youths, a pair of adults, or a group of females accompanied by a dominant male. When visitors come near the cleaning stations, the cleaner wrasses greet the visitors by performing a dance-like motion in which they move their rear up and down. The visitors are referred to as "clients". Blue streak cleaner wrasses clean to consume ectoparasites on client fish for food. The bigger fish recognise them as cleaner fish because they have a lateral stripe along the length of their bodies and by their movement patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four 100 m lengths of both monofilament gill nets and trammel nets were deployed at depths between 15 and 18 m off the coast of the Algarve (south of Portugal) between April 1995 and June 1996. The nets were set on a natural rocky bottom with one end cut loose to simulate lost nets. Changes in net structure (net height, effective fishing area, movement, colonisation, wear and tear) and their catches (species, sizes, numbers, and biomass) were monitored by divers. Similar patterns were observed in all the nets, with a sharp decrease in net height and effective fishing area, and an increase in visibility within the first few weeks. Net movement was negligible except in the case of interference from other fishing gears. Catch rates were initially comparable to normally fished gill nets and trammel nets in this area, but decreased steadily over time. No sea birds, reptiles or mammals were caught in any of the 8 nets. Catches were dominated by fish (89 % by number, at least 27 species), in particular by sea breams (Sparidae) and wrasses (Labridae). Under the conditions experienced throughout the study the fishing Lifetime of a 'lost' net is between 15 and 20 wk. Based on an exponential model, we estimated that 100 m lengths of gill net and trammel net will catch 314 and 221 fish respectively over a 17 wk period. However, we consider this to be an underestimate due to high rates of predation and scavenging by octopuses, cuttlefish, moray eels, conger eels, and other fish such as the wrasse Coris julis. When the nets were surveyed in the following spring, 8 to 11 mo after being deployed, they were found to be completely destroyed or heavily colonised by algae and had become incorporated into the reef.