8 resultados para Wrasses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The status and composition of the Diplosentidae Tubangui et Masilungan, 1937 are reviewed. The type species of the type genus, Diplosentis amphacanthi Tubangui et Masilungan, 1937 from Siganus canaliculatus (Park, 1797) in the Philippines, is concluded to have been described inaccurately,in supposedly possessing, only two cement glands and lemnisci enclosed in a membranous sac. The species is almost certainly very close to species of Neorhadinorhynchus yamaguti, 1939 and Sclerocollum Schmidt of Paperna, 1978 which have also been reported from siganids from the tropical Indo-Pacific. Species of these genera have four cement glands and unexceptional lemnisci. As a result, Diplosentis Tubangui et Masilungan, 1937 is best considered to have affinities with the Cavisomidae Meyer, 1932. The Cavisomidae has priority over the Diplosentidae; thus the Diplosentidae becomes a synonym of the Cavisomidae. Neorhadinorhynchus and Sclerocollum are considered synonyms of Diplosentis. The affinities of the other species and genera formerly included in the Diplosentidae (other species of Diplosentis, Allorhadinorhynchus Yamaguti, 1959, Amapacanthus Salgado-Maldonado et Santos, 2000, Pararhadinorhynchus Johnston et Edmonds, 1947, Golvanorhynchus Noronha, do Fabio et Pinto, 1978 and Slendrorhynchus Amin et Soy, 1996) are discussed. It is concluded that all but Pararhadinorhynchus, two species of Diplosentis and Amapacanthus can be accommodated elsewhere satisfactorily. A new family, Transvenidae, is proposed for a small group of acanthocephalans that genuinely possess only two cement glands. Transvena annulospinosa gen. n., sp. n. is described from the labrids Anampses neoguinaicus Bleeker, 1878 (type host), A. geographicus Valenciennes, 1840, A. caeruleopunctatus Ruppell, 1829, Hemigymnus fasciatus (Bloch, 1792), and H. melapterus (Bloch, 1791) from the Great Barrier Reef, Queensland, Australia. Transvena gen. n. is distinguished from all other acanthocephalan genera by having a combination of a single ring of small spines on its trunk near or at the junction between the neck and trunk, two cement glands, a double-walled proboscis receptacle and hooks which decrease in length from the apex to the base of the proboscis. A second new genus within the Transvenidae, Trajectura, is proposed for T. perinsolens sp. n. from Anampses neoguinaicus, also from the Great Barrier Reef. Trajectura gen. n. is distinguished by the possession of only two cement glands and an anterior conical projection (function unknown) on the females. Diplosentis ikedai Machida, 1992 shares these characters and is recombined as Trajectura ikedai comb. n. Pararhadinorhynchus is transferred to the Transvenidae and Diplosentis manteri Gupta et Fatma, 1979 is recombined as Pararhadinorhynchus manteri comb. n.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Labroides dimidiatus, is one of several species of cleaner wrasses found on coral reefs from Eastern Africa and the Red Sea to French Polynesia, for the first time from Iran (Persian Gulf, Kish Island). Like other cleaner wrasses, it eats parasites and dead tissue off larger fishes’ skin in a mutualistic relationship that provides food and protection for the wrasse, and considerable health benefits for the other fishes. Some fish mimic cleaner wrasses. For example, a species of blenny called Aspidontus taeniatus has evolved the same behavior to tear small pieces of flesh from bigger fish. Cleaner wrasses are usually found at cleaning stations. Cleaning stations are occupied by different units of cleaner wrasses, such as a group of youths, a pair of adults, or a group of females accompanied by a dominant male. When visitors come near the cleaning stations, the cleaner wrasses greet the visitors by performing a dance-like motion in which they move their rear up and down. The visitors are referred to as "clients". Blue streak cleaner wrasses clean to consume ectoparasites on client fish for food. The bigger fish recognise them as cleaner fish because they have a lateral stripe along the length of their bodies and by their movement patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four 100 m lengths of both monofilament gill nets and trammel nets were deployed at depths between 15 and 18 m off the coast of the Algarve (south of Portugal) between April 1995 and June 1996. The nets were set on a natural rocky bottom with one end cut loose to simulate lost nets. Changes in net structure (net height, effective fishing area, movement, colonisation, wear and tear) and their catches (species, sizes, numbers, and biomass) were monitored by divers. Similar patterns were observed in all the nets, with a sharp decrease in net height and effective fishing area, and an increase in visibility within the first few weeks. Net movement was negligible except in the case of interference from other fishing gears. Catch rates were initially comparable to normally fished gill nets and trammel nets in this area, but decreased steadily over time. No sea birds, reptiles or mammals were caught in any of the 8 nets. Catches were dominated by fish (89 % by number, at least 27 species), in particular by sea breams (Sparidae) and wrasses (Labridae). Under the conditions experienced throughout the study the fishing Lifetime of a 'lost' net is between 15 and 20 wk. Based on an exponential model, we estimated that 100 m lengths of gill net and trammel net will catch 314 and 221 fish respectively over a 17 wk period. However, we consider this to be an underestimate due to high rates of predation and scavenging by octopuses, cuttlefish, moray eels, conger eels, and other fish such as the wrasse Coris julis. When the nets were surveyed in the following spring, 8 to 11 mo after being deployed, they were found to be completely destroyed or heavily colonised by algae and had become incorporated into the reef.