126 resultados para Wrapper
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Besides optimizing classifier predictive performance and addressing the curse of the dimensionality problem, feature selection techniques support a classification model as simple as possible. In this paper, we present a wrapper feature selection approach based on Bat Algorithm (BA) and Optimum-Path Forest (OPF), in which we model the problem of feature selection as an binary-based optimization technique, guided by BA using the OPF accuracy over a validating set as the fitness function to be maximized. Moreover, we present a methodology to better estimate the quality of the reduced feature set. Experiments conducted over six public datasets demonstrated that the proposed approach provides statistically significant more compact sets and, in some cases, it can indeed improve the classification effectiveness. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Recto of wrapper reads: "Oct. 31, 1740 to June 24, 1742. Papers relative to the charges against & defence made by Nathan Prince in 1741. Examined & done with." Verso reads "Hon. President [Josiah] Quincy." These annotations suggest that the records in this collection were consulted by Quincy, who served as Harvard's President from 1829 to 1845. It is likely that he used them when writing his two-volume History of Harvard University, which includes a lengthy passage about Prince and his trials at Harvard.
Resumo:
Paper wrapper reads: "Nicholas Shapleigh & John Shapleigh / Division of farm at Kittery / Recorded January 31st, 1798 / 17 cents duty." The legal document establishing the division of the land is signed by each of the three surveyors: Nicholas Morrell(?), William Fry, and Daniel Emery.
Resumo:
Web wrapper extracts data from HTML document. The accuracy and quality of the information extracted by web wrapper relies on the structure of the HTML document. If an HTML document is changed, the web wrapper may or may not function correctly. This paper presents an Adjacency-Weight method to be used in the web wrapper extraction process or in a wrapper self-maintenance mechanism to validate web wrappers. The algorithm and data structures are illustrated by some intuitive examples.
Resumo:
Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.
Resumo:
Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfilment of the requirements for the degree of Master in Computer Science
Resumo:
Com o aumento de plataformas móveis disponíveis no mercado e com o constante incremento na sua capacidade computacional, a possibilidade de executar aplicações e em especial jogos com elevados requisitos de desempenho aumentou consideravelmente. O mercado dos videojogos tem assim um cada vez maior número de potenciais clientes. Em especial, o mercado de jogos massive multiplayer online (MMO) tem-se tornado muito atractivo para as empresas de desenvolvimento de jogos. Estes jogos suportam uma elevada quantidade de jogadores em simultâneo que podem estar a executar o jogo em diferentes plataformas e distribuídos por um "mundo" de jogo extenso. Para incentivar a exploração desse "mundo", distribuem-se de forma inteligente pontos de interesse que podem ser explorados pelo jogador. Esta abordagem leva a um esforço substancial no planeamento e construção desses mundos, gastando tempo e recursos durante a fase de desenvolvimento. Isto representa um problema para as empresas de desenvolvimento de jogos, e em alguns casos, e impraticável suportar tais custos para equipas indie. Nesta tese e apresentada uma abordagem para a criação de mundos para jogos MMO. Estudam-se vários jogos MMO que são casos de sucesso de modo a identificar propriedades comuns nos seus mundos. O objectivo e criar uma framework flexível capaz de gerar mundos com estruturas que respeitam conjuntos de regras definidas por game designers. Para que seja possível usar a abordagem aqui apresentada em v arias aplicações diferentes, foram desenvolvidos dois módulos principais. O primeiro, chamado rule-based-map-generator, contem a lógica e operações necessárias para a criação de mundos. O segundo, chamado blocker, e um wrapper à volta do módulo rule-based-map-generator que gere as comunicações entre servidor e clientes. De uma forma resumida, o objectivo geral e disponibilizar uma framework para facilitar a geração de mundos para jogos MMO, o que normalmente e um processo bastante demorado e aumenta significativamente o custo de produção, através de uma abordagem semi-automática combinando os benefícios de procedural content generation (PCG) com conteúdo gráfico gerado manualmente.
Resumo:
Parrocha es un envoltorio simple realizado para las plataformas de desarrollo basadas en el estándar CLI de la biblioteca libparrot. Libparrot es una biblioteca de funciones implementada en C, que puede compilarse sobre varias plataformas y en la que se implementa la plataforma de desarrollo Parrot.
Resumo:
We present an open-source ITK implementation of a directFourier method for tomographic reconstruction, applicableto parallel-beam x-ray images. Direct Fourierreconstruction makes use of the central-slice theorem tobuild a polar 2D Fourier space from the 1D transformedprojections of the scanned object, that is resampled intoa Cartesian grid. Inverse 2D Fourier transform eventuallyyields the reconstructed image. Additionally, we providea complex wrapper to the BSplineInterpolateImageFunctionto overcome ITKâeuro?s current lack for image interpolatorsdealing with complex data types. A sample application ispresented and extensively illustrated on the Shepp-Loganhead phantom. We show that appropriate input zeropaddingand 2D-DFT oversampling rates together with radial cubicb-spline interpolation improve 2D-DFT interpolationquality and are efficient remedies to reducereconstruction artifacts.
Resumo:
El govern de la Comuniata Autònoma de Catalunya ha reinstituït l'organització comarcal que ja havia implantat la Generalitat durant la II República, Ara però, s'ha otorgat als Consells Comarcals, com a òrgan de govern de les comarques, un marcat caràcter institucional i administratiu. Per tant, l'administració comarcal a Catalunya s'adscriu entre les administracions locals, i com un nou nivell intermedi entre el municipi i la província (mentre aquesta subsisteix) o bé la Comunitat Autònoma. Aquesta modificació del model estatal d'Administracions Públiques, evidentment, condiciona l'organització del sistema de serveis socials.El present treball pretén estudiar, a través del repositoir legislatiu, el marc institucional en el qual s'organitzen els serveis social d'àmbit comarcal. Això ens ha de permetre conèixer més el context pròxim en el què actuen els equips i professionals del medi comarcal. Ells són els principals destinataris d¡aquesta proposta d'anàlisis: però igualment pot ajudar als altres professionals a reflexionar sobre el procés d'estructuració dels serveis de benestar social que s'està desenvolupant a Catalunya
Resumo:
El govern de la Comuniata Autònoma de Catalunya ha reinstituït l'organització comarcal que ja havia implantat la Generalitat durant la II República, Ara però, s'ha otorgat als Consells Comarcals, com a òrgan de govern de les comarques, un marcat caràcter institucional i administratiu. Per tant, l'administració comarcal a Catalunya s'adscriu entre les administracions locals, i com un nou nivell intermedi entre el municipi i la província (mentre aquesta subsisteix) o bé la Comunitat Autònoma. Aquesta modificació del model estatal d'Administracions Públiques, evidentment, condiciona l'organització del sistema de serveis socials.El present treball pretén estudiar, a través del repositoir legislatiu, el marc institucional en el qual s'organitzen els serveis social d'àmbit comarcal. Això ens ha de permetre conèixer més el context pròxim en el què actuen els equips i professionals del medi comarcal. Ells són els principals destinataris d¡aquesta proposta d'anàlisis: però igualment pot ajudar als altres professionals a reflexionar sobre el procés d'estructuració dels serveis de benestar social que s'està desenvolupant a Catalunya