996 resultados para Work rolls


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface failure characteristics of different work roll materials, i.e. High Speed Steel, High Chromium Iron and Indefinite Chill Iron, used in the finishing stands of a hot strip mill have been investigated using stereo microscopy, 3D optical profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the surface failure mechanisms of work rolls for hot rolling are very complex, involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. Despite the differences in chemical composition and microstructure, the tribological response of the different work roll materials was found to be strongly dependent on the material microstructure and especially the presence and distribution of microstructural constituents, such as the different carbide phases and graphite (in the case of Indefinite Chill Iron). Cracking and chipping of the work roll surfaces, both having a negative impact on work roll wear, are strongly influenced by the presence of carbides, carbide networks and graphite in the work roll surface. Consequently, the amount of carbide forming elements as well as the manufacturing process must be controlled in order to obtain an optimised microstructure and a predictable wear rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose with this thesis was to examine the cold rolling mill located at Högskolan Dalarna and to stabilize the rolling process, to achieve steady state. Experiments with cold rolling of an aluminium strip have given results for rolling force, friction, reduction, strip tension and strain hardening. Results show that steady state has been found for the experiments with roll force and strain hardening, and not been found for the experiments with friction and reduction. Results show that increased strip tension gives lower roll forces. The roll force equation of Stone shows comparable results with reality for dry contact with reductions up to 30 %, but starts being incomparable with higher reductions. The roll force equation of Stone shows a bit higher roll forces than reality gave, but was comparable within reductions from 13 to 50 %. Experiments have shown that the aluminium strip has gone through strain hardening. Experiments show how the set roll gap did not yield the desired thickness reduction, there for the elastic spring constant for the rolling mill was examined and determined to be 417 N / mm for the specific alloy band. The influence of tension strip for roll force was examined and Results confirm the theory about how the roll force is decreased by increasing tension strip. The work rolls started to slip against the alumina strip as high tension strip; 70 N/mm2, gave low roll force; < 15kN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation into the production of ultrafine (1 µm) equiaxed ferrite (UFF) grains in low-carbon steel was made using laboratory rolling, compression dilatometry, and hot torsion techniques. It was found that the hot rolling of thin strip, with a combination of high shear strain and high undercooling, provided the conditions most suitable for the formation of this type of microstructure. Although high strains could be applied in compression and torsion experiments, large volume fractions of UFF were not observed in those samples, possibly due to the lower level of undercooling achieved. It is thought that ferrite refinement was due to a strain-induced transformation process, and that ferrite grains nucleated on parallel and linear deformation bands that traversed austenite grains. These bands formed during the deformation process, and the undercooling provided by the contact between the strip and the work rolls was sufficient to drive the transformation to homogeneous UFF grains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rod rolling is a process where the deformation state of the workpiece between the work rolls is quite different from the strip rolling process. However, in most microstructure evolution models, the simple area strains (natural logarithm of the area reduction ratio) multiplied by a constant have been used to compute pass-by-pass evolution of austenite grain size (AGS) in rod (or bar) rolling, without any verification. The strains at a given pass play a crucial role in determining the recrystallization behavior (static or dynamic). In this study, an analytical model that calculates the pass-by-pass strain and strain rate in rod rolling has been developed and verified by conducting four-pass (oval–round) bar and plate rolling experiments. Numerical simulations have then been carried out for the four-pass rolling sequence using the area strain model and the new analytical model, focusing on the effect of the method for calculating the strain on the recrystallization behavior and evolution of AGS. The AGS predicted was compared with those obtained from hot torsion tests. It is shown that the analytical model developed in this study is more appropriate in the analysis of bar (or rod) rolling. It was found that the recrystallization behavior and evolution of AGS during this process were influenced significantly by the calculation method for the deformation parameters (strain and strain rate). The pass-by-pass strain obtained from the simple area strain model is inadequate to be used as an input to the equations for recrystallization and AGS evolution under these rolling conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of a steel strip rolling process is to produce high quality steel at a desired thickness.  Thickness reduction is the result of the speed difference between the incoming and the outgoing steel strip and the application of the large normal forces via the backup and the work rolls.  Gauge control of a cold rolled steel strip is achieved using the gaugemeter principle that works adequately for the input gauge changes and the strip hardness changes.  However, the compensation of some factors is problematic, for example, eccentricity of the backup rolls.  This cyclic eccentricity effect causes a gauge deviation, but more importantly, a signal is passed to the gap position control so to increase the eccentricity deviation.  Consequently, the required high product tolerances are severely limited by the presence of the roll eccentricity effects.
In this paper a direct model reference adaptive control (MRAC) scheme with dynamically constructed neural controller was used.  The aim here is to find the simplest controller structure capable of achieving an optimal performance.  The stability of the adaptive neural control scheme (i.e. the requirement of persistency of excitation and bounded learning rates) is addressed by using as the inputs to the reference model the plant's state variables.  In such a case, excitation is due to actual plant signals (states) affected by plant disturbances and noise.  In addition, a reference model in the form of a filter with a desired transfer function using Modulus Optimum design was used to ensure variance in the desired dynamic characteristics of the system.  The gradually decreasing learning rate employed by the neural controller in this paper is aimed at eliminating controller instability resulting from over-aggressive control.  The moving target problem (i.e. the difficulty of global neural networks to perfrom several separate computational tasks in closed -loop control) is addressed by the localized architecture of the controller.  The above control scheme and learning algorithm offers a method for automatic discovery of an efficient controller.
The resulting neural controller produces an excellent disturbance rejection in both cases of eccentricity and hardness disturbances, reducing the gauge deviation due to eccentricity disturbance from 33.36% to 4.57% on average, and the gauge deviation due to hardness disturbance from 12.59% to 2.08%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation examined the process of the longitudinal rolling of tubes through a set of three driven grooved rolls. Tubes were rolled with or without internal support i.e. under mandrel rolling or sinking conditions. Knowledge was required of the way in which the roll separating force and rolling torque vary for different conditions of rolling. The objective of this work being to obtain a better understanding and optimization of the mechanics of the process. The design and instrumentation of a complete experimental three-roll mill for the rolling of lead tube as an analogue material for hot steel, with the measurement of the individual roll force and torque is described. A novel type of roll load cell was incorporated and its design and testing discussed. Employing three roll sizes of 170 mm, 255 mm and 340 mm shroud diameter, precise tube specimens of various tube diameter to thickness ratios were rolled under sinking and mandrel rolling conditions. To obtain an indication of the tube-roll contact areas some of the specimens were partially rolled. For comparative purposes the remaining tubes were completely rolled as a single pass. The roll forces, torques and tube parameters e.g. reduction of area, D/t ratio, were collated and compared for each of the three roll diameters considered. The influence of friction, particularly in the mandrel rolling process, was commented upon. Theoretical studies utilising the equilibrium and energy methods were applied to both the sinking and mandrel rolling processes. In general, the energy approach gave better comparison with experiment, especially for mandrel rolling. The influence of the tube deformation zones on the two processes was observed and on the subsequent modification of the tube-roll arc contact length. A rudimentary attempt was made in the theoretical sinking analysis to allow for the deformation zone prior to roll contact; some success was noted. A general survey of the available tube rolling literature, for both the sinking and mandrel processes has been carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold roll forming of thin-walled sections is a very useful process in the sheet metal industry. However, the conventional method for the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is a very time consuming and skill demanding exercise. This thesis describes the establishment of a stand-alone minicomputer based CAD/CAM system for assisting the design and manufacture of form-rolls. The work was undertaken in collaboration with a leading manufacturer of thin-walled sections. A package of computer programs have been developed to provide computer aids for every aspect of work in form-roll design and manufacture. The programs have been successfully implemented, as an integrated CAD/CAM software system, on the ICL PERQ minicomputer with graphics facilities. Thus, the developed CAD/CAM system is a single-user workstation, with software facilities to help the user to perform the conventional roll design activities including the design of the finished section, the flower pattern, and the form-rolls. A roll editor program can then be used to modify, if required, the computer generated roll profiles. As far as manufacturing is concerned, a special-purpose roll machining program and postprocessor can be used in conjunction to generate the NC control part-programs for the production of form-rolls by NC turning. Graphics facilities have been incorporated into the CAD/CAM software programs to display drawings interactively on the computer screen throughout all stages of execution of the CAD/CAM software. It has been found that computerisation can shorten the lead time in all activities dealing with the design and manufacture of form-rolls, and small or medium size manufacturing companies can gain benefits from the CAD/CM! technology by developing, according to its own specification, a tailor-made CAD/CAM software system on a low cost minicomputer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional methods of form-roll design and manufacture for Cold Roll-Forming of thin-walled metal sections have been entirely manual, time consuming and prone to errors, resulting in inefficiency and high production costs. With the use of computers, lead time can be significantly improved, particularly for those aspects involving routine but tedious human decisions and actions. This thesis describes the development of computer aided tools for producing form-roll designs for NC manufacture in the CAD/CAM environment. The work was undertaken to modernise the existing activity of a company manufacturing thin-walled sections. The investigated areas of the activity, including the design and drafting of the finished section, the flower patterns, the 10 to 1 templates, and the rolls complete with pinch-difference surfaces, side-rolls and extension-contours, have been successfully computerised by software development . Data generated by the developed software can be further processed for roll manufacturing using NC lathes. The software has been specially designed for portability to facilitate its implementation on different computers. The Opening-Radii method of forming was introduced as a subsitute to the conventional method for better forming. Most of the essential aspects in roll design have been successfully incorporated in the software. With computerisation, extensive standardisation in existing roll design practices and the use of more reliable and scientifically-based methods have been achieved. Satisfactory and beneficial results have also been obtained by the company in using the software through a terminal linked to the University by a GPO line. Both lead time and productivity in roll design and manufacture have been significantly improved. It is therefore concluded that computerisation in the design of form-rolls for automation by software development is viable. The work also demonstrated the promising nature of the CAD/CAM approach.