938 resultados para Work function
Resumo:
The dependence of barrier height on the metal work function of metal-SiO2-p-Si Schottky barrier diodes was investigated and nonlinearity was found. This is explained by the theoretical model proposed recently by Chattopadhyay and Daw. The values of interface trap density and fixed charge density of the insulating layer of the diodes were calculated using this model and found to be appreciably different from those estimated by the usual method.
Resumo:
Density-functional calculations are performed to explore the relationship between the work function and Young's modulus of RhSi, and to estimate the p-Schottky-barrier height (SBH) at the Si/RhSi(010) interface. It is shown that the Young's modulus and the workfunction of RhSi satisfy the generic sextic relation, proposed recently for elemental metals. The calculated p-SBH at the Si/RhSi interface is found to differ only by 0.04 eV in opposite limits, viz., no-pinning and strong pinning. We find that the p-SBH is reduced as much as by 0.28 eV due to vacancies at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761994]
Resumo:
Barium-functionalized multiwalled carbon nanotube yarns were fabricated by drawing and twisting multiwalled carbon nanotube forests through a solution containing barium nitrate. After heat activation under vacuum, the functionalized yarns were enriched in barium oxide due to the high surface-to-volume ratio of the nanotubes. The cathodes exhibited good thermionic properties, with a work function as low as 1.73-2.06 eV and thermionic current density that exceeded 185 mA/cm(2) in a field of 850 V/5 mm at 1317 K. The barium-functionalized yarns had high tensile strength of up to 420 MPa and retained strength of similar to 250 MPa after a 2 h activation process. (C) 2008 American Institute of Physics.
Effect of work function and surface microstructure on field emission of tetrahedral amorphous carbon
Resumo:
The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.
Resumo:
The ZnO films deposited by magnetron sputtering were treated by H/O plasma. It is found that the field emission (FE) characteristics of the ZnO film are considerably improved after H-plasma treatment and slightly deteriorated after O-plasma treatment. The improvement of FE characteristics is attributed to the reduced work function and the increased conductivity of the ZnO H films. Conductive atomic force microscopy was employed to investigate the effect of the plasma treatment on the nanoscale conductivity of ZnO, these findings correlate well with the FE data and facilitate a clearer description of electron emission from the ZnO H films.
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.
Resumo:
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W{100} cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.