510 resultados para Woolly monkey
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The viral specific precursor polyproteins of simian sarcoma/simian associated virus (SiSV/SiAV), baboon endogenous viruses (BaEV), and three human isolate retroviruses, have been analyzed by radioimmunoprecipitation and tryptic peptide mapping. Cells infected with the BaEV isolates are characterized by identical precursor polyproteins: gPr80-85('env), Pr70-71('gag), and Pr65-67('gag). By tryptic digest mapping, m7-BaEV and 455K-BaEV were shown to be highly related. By comparison, mapping studies showed that BILN-BaEV was less highly related to m7-BaEV than was 455K-BaEV. Chase-incubated cells infected with BaEV also contained a stable, p28-related polyprotein termed P72('gag). This polyprotein appeared to arise by posttranslational modification of Pr70-71('gag). Tryptic digest mapping of BaEV and HL23V precursor polyproteins suggested that the BaEV-like component of HL23V was more closely related to m7-BaEV than to 455K-BaEV or BILN-BaEV.^ The intracellular precursor polyproteins of SiSV(SiAV) and gibbon ape leukemia virus (GaLV) were compared to the intracellular proteins of the human retrovirus isolates, HL23V, HEL12V, and A1476V. Cells infected with SiSV(SiAV) were characterized by polyproteins Pr200('gag-pol), gPr80('env), Pr80('gag), pr60('gag), and Pr40('gag). We have found that the human isolates are identical to true SiAV with regard to the size and structure of their precursor polyproteins. Both gPr80('env) and Pr60('gag) of SiAV were identical by tryptic peptide mapping to the respective proteins from the three human retroviral isolates examined. We have also shown that these viruses differ significantly from each of the GaLV isolates studied. Since SiAV differs substantially from any known GaLV isolate, we feel that it is unlikely that SiAV is a subtype of GaLV which exists today in the gibbon gene pool. The experimental evidence suggests that SiAV may be an exogenous human retrovirus that was transmitted originally into the human gene pool in the distant past by cross-species infection with GaLV(,SF) or with the GaLV(,SF) progenitor virus. It is, therefore, quite possible that SiAV expression in the pet woolly monkey arose from a recent infection of that monkey with SiAV from humans.^
Resumo:
The intercalated discs of working myocardium and Purkinje fibers of the monkey heart were examined by scanning and transmission electron microscopy. The NaOH/ultrasonication technique resulted in the digestion of connective tissue and a separation of the intercellular junctions of intercalated discs, such that these could be visualized three-dimensionally. The intercalated discs of ventricular myocytes, atrial myocytes and Purkinje fibers vary considerably in number and configuration, as do the intercalated discs of the three different layers of the ventricular myocardium. Myocytes in the subepicardial, middle and subendocardial layers of the ventricle have 1-3, 4-5 and 5-6 intercalated discs at the end of these cells, respectively, Those in the endocardial layer are characterized by the presence of small laterally-placed intercalated discs. Atrial myocytes and Purkinje fibers usually only have 1-2 intercalated discs, Individual intercalated discs in ventricular myocytes have complicated stairs with 10-30 steps and corresponding risers, while those of atrial myocytes and Purkinje fibers have simple stairs with 1-3 steps and risers, Steps equivalent to the plicate segments are characterized by densely-packed microplicae and finger-like microprojections which greatly increase surface area in vertricular myocytes, Microprojections in atrial myocytes and Purkinje fibers are sparse by comparison, Risers equivalent to the interplicate segments containing large gap junctional areas are most numerous in left ventricular myocytes, followed by right ventricular myocytes, Purkinje fibers and atrial myocytes in decreasing order. The geometric arrangement of the various types of myocytes may be related with impulse propagation. Large intercalated discs of cell trunks and series branches may participate in longitudinal propagation, while small laterally-placed ones may be the site of transverse propagation.
Resumo:
Alouatta guariba clamitans (brown howler monkey) is an endemic primate from the southeastern Brazil tropical forests, classified as near threatened by the IUCN Red List 2007. The genus Aloualta is one of the most difficult New World monkeys to breed and rear in captivity. In this study we examined the macroscopic and histological aspects of the female genital tract of wild brown howler monkeys to provide baseline information for future reproduction research. The anatomical relationship between the vagina, uterus, broad ligament, oviducts and ovaries are those of a typical primate reproductive tract. The fundic portion of the uterus is globoid, the cervix is well developed, which confers to the uterus an elongated shape, and the vagina is a long flattened channel. Histological analysis conducted in females in the follicular phase revealed large quantities of interstitial luteinized tissue in the ovaries, a stratified nonkeratinized vaginal epithelium, lack of glands in the vaginal mucosa and simple tubular endometrial glands. The observed anatomical features should be considered in the adaptation and application of assisted reproductive techniques aimed at improving captive reproduction for species conservation. Am. J. Primatol. 71:145-152, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Saimiri sciureus is one of the smallest Cebidae native of Amazon region and also found at the biological reserve of northeast Atlantic forest. It is an omnivore animal, with diversified diet that directly influences the lingual mucosa, which includes certain types of papillae with different organization levels. The present study attempted to describe the morphological and ultrastructure aspects of the dorsal surface of the S. sciureus. Five tongues of de S. sciureus were analyzed from three males and two females who died from natural causes and were obtained from breeding colonies of CENP-Ananindeua-PA. Main macroscopic features were a general triangular shape with a craniocaudal elongation pointed apex. Tissue samples-apex, body, and root of tongue-were fixed in modified Karnovsky solution, following standard scanning protocol, mounted in stubs, coated by gold, and analyzed by Scanning Electron Macroscopy (SEM). Four types of papillae were described: filiform (along all tissue extension with 154 mu m of diameter), fungiform (along all tissue extension with 272 mu m of diameter), vallate [just three units in caudal (dorsal) portion with 830 mu m of diameter] and foliate (one pair at caudolateral surface with similar to 13 projections and 3000 mu m in length). Data analysis indicates that the distribution and ultra structural morphology of the S. sciureus lingual papillae are some similar to other primates. Microsc. Res. Tech. 74:484-487, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
In the present paper were analysed the three-dimensional characteristics of the interface epithelium-connective tissue surface of finger prints of Cebus apella monkey employing the scanning electron microscopic methods. The connective tissue core (CTC) and epithelial papillae were examined verifying the three-dimensional configuration of the tissue projections. The samples were fixed in Bouin solsution for histologic preparations and in modified Karnovsky for examine to observe in scanning electron microscopy. After treatment in the 10% NaOH solution during 3 to 5 days, the surface of finger prints revealed a distribution of CTC of lamina propria in situ showing original three-dimensional SEM images. The linear and circular dispositions CTC, and the furrows were clearly identified. Each pointed papilla presented a large base and longitudinal disposition of thick collagen fiber bundles and in some areas with a complex reticular formations. The longitudinal furrows between the pointed papillae exhibited a dense layer of connective tissue and showed only low CTC or laminar in shape. The presence of numerous foramina of sweat gland were noted in three-dimensional SEM images.
Resumo:
Toxoplasma gondii isolates are highly diverse in domestic animals from Brazil. However, little is known about the genetics of this parasite from wild mammals in the same region. Reveal genetic similarity or difference of T. gondii among different animal populations is necessary for us to understand transmission of this parasite. Here we reported isolation and genetic characterisation of three T. gondii isolates from wild animals in Brazil. The parasite was isolated by bioassay in mice from tissues of a young male red handed howler monkey (Alouatta belzebul), an adult male jaguarundi (Puma yagouaroundi), and an adult female black-eared opossum (Didelphis aurita). The monkey and the jaguarundi had inhabited the Zoo of Parque Estadual Dois Irmaos, Pernambuco State, Northeastern Brazil, for 1 year and 8 years, respectively. The wild black-eared opossum was captured in Sao Paulo State, Southeastern Brazil, and euthanised for this study because it was seropositive for T. gondii (titre 1:100 by the modified agglutination test, MAT). Ten PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico, were used to genotype the isolates. T. gondii was isolated from the brain and heart homogenate of the monkey, the muscle homogenate of the jaguarundi, and the heart homogenate of the black-eared opossum. This was the first isolation of T. gondii from a neotropical fetid from Brazil. The isolate from the monkey (TgRhHmBr1) was not virulent in mice, whereas the isolates from the jaguarundi (TgJagBr1) and the black-eared opossum (TgOpBr1) were virulent in mice. The genotype of the isolate from the monkey has been identified in isolates from a goat and ten chickens in the same region of Brazil, suggesting that it may be a common lineage circulating in this region. The genotypes of the isolates from the jaguarundi and the black-eared opossum have not been previously reported. Although there are already 88 genotypes identified from a variety of animal hosts in Brazil, new genotypes are continuously being identified from different animal species, indicating an extremely high diversity of T. gondii in the population. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Here we present evidence that the pyramidal cell phenotype varies markedly in the cortex of different anthropoid species. Regional and species differences in the size of, number of bifurcations in, and spine density of the basal dendritic arbors cannot be explained by brain size. Instead, pyramidal cell morphology appears to accord with the specialized cortical function these cells perform. Cells in the prefrontal cortex of humans are more branched and more spinous than those in the temporal and occipital lobes. Moreover, cells in the prefrontal cortex of humans are more branched and more spinous than those in the prefrontal cortex of macaque and marmoset monkeys. These results suggest that highly spinous, compartmentalized, pyramidal cells (and the circuits they form) are required to perform complex cortical functions such as comprehension, perception, and planning.
Resumo:
The basal dendritic arbors of 442 supragranular pyramidal cells in visual cortex of the marmoset monkey were compared by fractal analyses. As detailed in a previous study,(1) individual cells were injected with Lucifer Yellow and processed for a DAB reaction product. The basal dendritic arbors were drawn, in the tangential plane, and the fractal dimension (D) determined by the dilation method. The fractal dimensions were compared between cells in ten cortical areas containing cells involved in visual processing, including the primary visual area (Vi), the second visual area (V2), the dorsoanterior area (DA), the dorsomedial area (DM), the dorsolateral. area (DL), the middle temporal area (MT), the posterior parietal area (PP), the fundus of the superior temporal area (FST) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively). Of 45 pairwise interareal comparisons of the fractal dimension of neurones, 20 were significantly different. Moreover, comparison of data according to previously published visual processing pathways revealed a trend for cells with greater fractal dimensions in higher cortical areas. Comparison of the present results with those in homologous cortical areas in the macaque monkey(2) revealed some similarities between the two species. The similarity in the trends of D values of cells in both species may reflect developmental features which, result in different functional attributes.
Resumo:
Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.
Resumo:
Recent studies have revealed striking differences in pyramidal cell structure among cortical regions involved in the processing of different functional modalities. For example, cells involved in visual processing show systematic variation, increasing in morphological complexity with rostral progression from V1 through extrastriate areas. Differences have also been identified between pyramidal cells in somatosensory, motor and prefrontal cortex, but the extent to which the pyramidal cell phenotype may vary between these functionally related cortical regions remains unknown. In the present study we investigated the structure of layer III pyramidal cells in somatosensory and motor areas 3b, 4, 5, 6 and 7b of the macaque monkey. Cells were intracellularly injected in fixed, flat-mounted cortical slices and analysed for morphometric parameters. The size of the basal dendritic arbours, the number of their branches and their spine density were found to vary systematically between areas. Namely, we found a trend for increasing complexity in dendritic arbour structure through areas 3b, 5 and 7b. A similar trend occurred through areas 4 and 6. The differences in arbour structure may determine the number of inputs received by neurons and may thus be an important factor in determining function at the cellular and systems level.
Resumo:
Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
Recent studies have revealed marked variation in pyramidal cell structure in the visual cortex of macaque and marmoset monkeys. In particular, there is a systematic increase in the size of, and number of spines in, the arbours of pyramidal cells with progression through occipitotemporal (OT) visual areas. In the present study we extend the basis for comparison by investigating pyramidal cell structure in visual areas of the nocturnal owl monkey. As in the diurnal macaque and marmoset monkeys, pyramidal cells became progressively larger and more spinous with anterior progression through OT visual areas. These data suggest that: 1. the trend for more complex pyramidal cells with anterior progression through OT visual areas is a fundamental organizational principle in primate cortex; 2. areal specialization of the pyramidal cell phenotype provides an anatomical substrate for the reconstruction of the visual scene in OT areas; 3. evolutionary specialization of different aspects of visual processing may determine the extent of interareal variation in the pyramidal cell phenotype in different species; and 4. pyramidal cell structure is not necessarily related to brain size. Crown Copyright (C) 2003 Published by Elsevier Science Ltd on behalf of IBRO. All rights reserved.