908 resultados para Wood falls


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25-5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25-0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8-5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20-30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0-5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to beta and gamma diversity in deep-sea ecosystems. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the impact of glaucomatous visual impairment on postural sway and falls among older adults.Methods: The sample comprised 72 community-dwelling older adults with open-angle glaucoma, aged 74.0 5.8 years (range 62 to 90 years). Measures of visual function included binocular visual acuity (high-contrast), binocular contrast sensitivity (Pelli- Robson) and binocular visual fields (merged monocular HFA 24-2 SITA-Std). Postural stability was assessed under four conditions: eyes open and closed, on a firm and on a foam surface. Falls were monitored for six months with prospective falls diaries. Regression models, adjusting for age and gender, examined the association between vision measures and postural stability (linear regression) and the number of falls (negative binomial regression). Results: Greater visual field loss was significantly associated with poorer postural stability with eyes open, both on firm (r = 0.34, p < 0.01) and foam (r = 0.45, p < 0.001) surfaces. Eighteen (25 per cent) participants experienced at least one fall: 12 (17 per cent) participants fell only once and six (eight per cent) participants fell two or more times (up to five falls). Visual field loss was significantly associated with falling; the rate of falls doubled for every 10 dB reduction in field sensitivity (rate ratio = 1.08, 95% CI = 1.02–1.13). Importantly, in a model comprising upper and lower field sensitivity, only lower field loss was significantly associated with the number of falls (rate ratio = 1.17, 95% CI = 1.04–1.33). Conclusions: Binocular visual field loss was significantly associated with postural instability and falls among older adults with glaucoma. These findings provide valuable directions for developing falls risk assessment and falls prevention strategies for this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in stride characteristics and gait rhythmicity characterize gait in Parkinson's disease and are widely believed to contribute to falls in this population. However, few studies have examined gait in PD patients who fall. This study reports on the complexities of walking in PD patients who reported falling during a 12-month follow-up. Forty-nine patients clinically diagnosed with idiopathic PD and 34 controls had their gait assessed using three-dimensional motion analysis. Of the PD patients, 32 (65%) reported at least one fall during the follow-up compared with 17 (50%) controls. The results showed that PD patients had increased stride timing variability, reduced arm swing and walked with a more stooped posture than controls. Additionally, PD fallers took shorter strides, walked slower, spent more time in double-support, had poorer gait stability ratios and did not project their center of mass as far forward of their base of support when compared with controls. These stride changes were accompanied by a reduced range of angular motion for the hip and knee joints. Relative to walking velocity, PD fallers had increased mediolateral head motion compared with PD nonfallers and controls. Therefore, head motion could exceed “normal” limits, if patients increased their walking speed to match healthy individuals. This could be a limiting factor for improving gait in PD and emphasizes the importance of clinically assessing gait to facilitate the early identification of PD patients with a higher risk of falling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Falls are a major health and injury problem for people with Parkinson disease (PD). Despite the severe consequences of falls, a major unresolved issue is the identification of factors that predict the risk of falls in individual patients with PD. The primary aim of this study was to prospectively determine an optimal combination of functional and disease-specific tests to predict falls in individuals with PD. ----- ----- Methods: A total of 101 people with early-stage PD undertook a battery of neurologic and functional tests in their optimally medicated state. The tests included Tinetti, Berg, Timed Up and Go, Functional Reach, and the Physiological Profile Assessment of Falls Risk; the latter assessment includes physiologic tests of visual function, proprioception, strength, cutaneous sensitivity, reaction time, and postural sway. Falls were recorded prospectively over 6 months. ----- ----- Results: Forty-eight percent of participants reported a fall and 24% more than 1 fall. In the multivariate model, a combination of the Unified Parkinson's Disease Rating Scale (UPDRS) total score, total freezing of gait score, occurrence of symptomatic postural orthostasis, Tinetti total score, and extent of postural sway in the anterior-posterior direction produced the best sensitivity (78%) and specificity (84%) for predicting falls. From the UPDRS items, only the rapid alternating task category was an independent predictor of falls. Reduced peripheral sensation and knee extension strength in fallers contributed to increased postural instability. ----- ----- Conclusions: Falls are a significant problem in optimally medicated early-stage PD. A combination of both disease-specific and balance- and mobility-related measures can accurately predict falls in individuals with PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment among older adults. This study explored the relationship between AMD, falls risk and other injuries and identified visual risk factors for these adverse events. Methods: Participants included 76 community-dwelling individuals with a range of severity of AMD (mean age, 77.0±6.9 years). Baseline assessment included binocular visual acuity, contrast sensitivity and merged visual fields. Participants completed monthly falls and injury diaries for one year following the baseline assessment. Results: Overall, 74% of participants reported having either a fall, injurious fall or other injury. Fifty-four percent of participants reported a fall and 30% reported more than one fall; of the 102 falls reported, 63% resulted in an injury. Most occurred outdoors (52%), between late morning and late afternoon (61%) and when navigating on level ground (62%). The most common non-fall injuries were lacerations (36%) and collisions with an object (35%). Reduced contrast sensitivity and visual acuity were associated with increased fall rate, after controlling for age, gender, cognitive function, cataract severity and self-reported physical function. Reduced contrast sensitivity was the only significant predictor of falls and other injuries. Conclusion: Among older adults with AMD, increased visual impairment was significantly associated with an increased incidence of falls and other injuries. Reduced contrast sensitivity was significantly associated with increased rates of falls, injurious falls and injuries, while reduced visual acuity was only associated with increased falls risk. These findings have important implications for the assessment of visually impaired older adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To examine the visual predictors of falls and injurious falls among older adults with glaucoma. METHODS: Prospective falls data were collected for 71 community-dwelling adults with primary open-angle glaucoma, mean age 73.9 ± 5.7 years, for one year using monthly falls diaries. Baseline assessment of central visual function included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from monocular Humphrey Field Analyser plots. Rate ratios (RR) for falls and injurious falls with 95% confidence intervals (CIs) were based on negative binomial regression models. RESULTS: During the one year follow-up, 31 (44%) participants experienced at least one fall and 22 (31%) experienced falls that resulted in an injury. Greater visual impairment was associated with increased falls rate, independent of age and gender. In a multivariate model, more extensive field loss in the inferior region was associated with higher rate of falls (RR 1.57, 95%CI 1.06, 2.32) and falls with injury (RR 1.80, 95%CI 1.12, 2.98), adjusted for all other vision measures and potential confounding factors. Visual acuity, contrast sensitivity, and superior field loss were not associated with the rate of falls; topical beta-blocker use was also not associated with increased falls risk. CONCLUSIONS: Falls are common among older adults with glaucoma and occur more frequently in those with greater visual impairment, particularly in the inferior field region. This finding highlights the importance of the inferior visual field region in falls risk and assists in identifying older adults with glaucoma at risk of future falls, for whom potential interventions should be targeted. KEY WORDS: glaucoma, visual field, visual impairment, falls, injury

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Real-world environments comprise surfaces of different textures, densities and gradients, which can threaten postural stability and increase falls risk. However, there has been limited research that has examined how walking on compliant surfaces influences gait and postural stability in older people and PD patients. Methods: PD patients (n = 49) and age-matched controls (n = 32) were assessed using three dimensional motion analysis during self-paced walking on both firm and foam walkways. Falls were recorded prospectively over 12 months using daily falls calendars. Results: Walking on a foam surface influenced the temporospatial characteristics for all groups, but PD fallers adopted very different joint kinematics compared with controls. PD fallers also demonstrated reduced toe clearance and had increased mediolateral head motion(relative to walking velocity) compared with control participants. Conclusions: Postural control deficits in PD fallers may impair their capacity to attenuate surface-related perturbations and control head motion. The risk of falling for PD patients may be increased on less stable surfaces.