22 resultados para Wissenserwerb
Resumo:
Concept exploration is a knowledge acquisition tool for interactively exploring the hierarchical structure of finitely generated lattices. Applications comprise the support of knowledge engineers by constructing a type lattice for conceptual graphs, and the exploration of large formal contexts in formal concept analysis.
Resumo:
Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a unified knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas of association rules for reducing the complexity of the visualization of Conceptual Information Systems.
Resumo:
TOSCANA is a graphical tool that supports the human-centered interactive processes of conceptual knowledge processing. The generality of the approach makes TOSCANA a universal tool applicable to a variety of domains. Only the so-called conceptual scales have to be designed for new applications. The presentation shows how the use of abstract scales allows the reuse of formerly defined conceptual scales. Furthermore it describes how thesauri and conceptual taxonomies can be integrated in the generation of conceptual scales.
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
This paper presents a lattice-based visual metaphor for knowledge discovery in electronic mail. It allows a user to navigate email using a visual lattice metaphor rather than a tree structure. By using such a conceptual multi-hierarchy, the content and shape of the lattice can be varied to accommodate any number of queries against the email collection. The system provides more flexibility in retrieving stored emails and can be generalised to any electronic documents. The paper presents the underlying mathematical structures, and a number of examples of the lattice and multi-hierarchy working with a prototypical email collection.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
Resumo:
In the last years, the main orientation of Formal Concept Analysis (FCA) has turned from mathematics towards computer science. This article provides a review of this new orientation and analyzes why and how FCA and computer science attracted each other. It discusses FCA as a knowledge representation formalism using five knowledge representation principles provided by Davis, Shrobe, and Szolovits [DSS93]. It then studies how and why mathematics-based researchers got attracted by computer science. We will argue for continuing this trend by integrating the two research areas FCA and Ontology Engineering. The second part of the article discusses three lines of research which witness the new orientation of Formal Concept Analysis: FCA as a conceptual clustering technique and its application for supporting the merging of ontologies; the efficient computation of association rules and the structuring of the results; and the visualization and management of conceptual hierarchies and ontologies including its application in an email management system.
Resumo:
Wissensmanagement in zentralisierten Wissensbasen erfordert einen hohen Aufwand für Erstellung und Wartung, und es entspricht nicht immer den Anforderungen der Benutzer. Wir geben in diesem Kapitel einen Überblick über zwei aktuelle Ansätze, die durch kollaboratives Wissensmanagement diese Probleme lösen können. Im Peer-to-Peer-Wissensmanagement unterhalten Benutzer dezentrale Wissensbasen, die dann vernetzt werden können, um andere Benutzer eigene Inhalte nutzen zu lassen. Folksonomies versprechen, die Wissensakquisition so einfach wie möglich zu gestalten und so viele Benutzer in den Aufbau und die Pflege einer gemeinsamen Wissensbasis einzubeziehen.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: an increasing number of researchers is working on improving the results of Web Mining by exploiting semantic structures in the Web, and they make use of Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The Semantic Web is the second-generation WWW, enriched by machine-processable information which supports the user in his tasks. Given the enormous size even of today’s Web, it is impossible to manually enrich all of these resources. Therefore, automated schemes for learning the relevant information are increasingly being used. Web Mining aims at discovering insights about the meaning of Web resources and their usage. Given the primarily syntactical nature of the data being mined, the discovery of meaning is impossible based on these data only. Therefore, formalizations of the semantics of Web sites and navigation behavior are becoming more and more common. Furthermore, mining the Semantic Web itself is another upcoming application. We argue that the two areas Web Mining and Semantic Web need each other to fulfill their goals, but that the full potential of this convergence is not yet realized. This paper gives an overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.
Resumo:
Ein wichtiger Baustein des neu entdeckten World Wide Web - des "Web 2.0" - stellen Folksonomies dar. In diesen Systemen können Benutzer gemeinsam Ressourcen verwalten und mit Schlagwörtern versehen. Die dadurch entstehenden begrifflichen Strukturen stellen ein interessantes Forschungsfeld dar. Dieser Artikel untersucht Ansätze und Wege zur Entdeckung und Strukturierung von Nutzergruppen ("Communities") in Folksonomies.
Resumo:
As the number of resources on the web exceeds by far the number of documents one can track, it becomes increasingly difficult to remain up to date on ones own areas of interest. The problem becomes more severe with the increasing fraction of multimedia data, from which it is difficult to extract some conceptual description of their contents. One way to overcome this problem are social bookmark tools, which are rapidly emerging on the web. In such systems, users are setting up lightweight conceptual structures called folksonomies, and overcome thus the knowledge acquisition bottleneck. As more and more people participate in the effort, the use of a common vocabulary becomes more and more stable. We present an approach for discovering topic-specific trends within folksonomies. It is based on a differential adaptation of the PageRank algorithm to the triadic hypergraph structure of a folksonomy. The approach allows for any kind of data, as it does not rely on the internal structure of the documents. In particular, this allows to consider different data types in the same analysis step. We run experiments on a large-scale real-world snapshot of a social bookmarking system.
Resumo:
Social resource sharing systems like YouTube and del.icio.us have acquired a large number of users within the last few years. They provide rich resources for data analysis, information retrieval, and knowledge discovery applications. A first step towards this end is to gain better insights into content and structure of these systems. In this paper, we will analyse the main network characteristics of two of the systems. We consider their underlying data structures – socalled folksonomies – as tri-partite hypergraphs, and adapt classical network measures like characteristic path length and clustering coefficient to them. Subsequently, we introduce a network of tag co-occurrence and investigate some of its statistical properties, focusing on correlations in node connectivity and pointing out features that reflect emergent semantics within the folksonomy. We show that simple statistical indicators unambiguously spot non-social behavior such as spam.