998 resultados para Wispering Gallery Mode Resonances


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microwave dielectric ceramic resonator based on BaCe2Ti5O15 and Ba5Nb4O15 have been prepared by conventional solid state ceramic route. The dielectric resonators (DRs) have high dielectric constant 32 and 40 for BaCe2Ti5O15 and Ba5Nb4O15, respectively. The whispering gallery mode (WGM) technique was employed for the accurate determination of the dielectric properties in the microwave frequency range. The BaCe2Ti5O15 and Ba5Nb4O15 have quality factors (Q X F) of 30,600 and 53,000 respectively. The quality factor is found to depend on the azimuthal mode numbers. The temperature coefficient of resonant frequency (Tr) of BaCe2Ti5O15 and Ba5Nb4O15 have been measured accurately using different resonant modes and are + 41 and + 78 ppm/K, respectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady-state transmission spectrum through the coupling waveguide. Alternatively, sensing based on cavity ring-up spectroscopy, i.e. CRUS, can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh Q-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which may improve the data collection rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present some result on sol-gel derived silica-hafnia systems. In particular we focus on fabrication, morphological and spectroscopic assessment of Er(3+)-activated thin films. Two examples of silica-hafnia-derived waveguiding glass ceramics, prepared by top-down and bottom-up techniques are reported, and the main optical properties are discussed. Finally, some properties of activated microspherical resonators, having a silica core, obtained by melting the end of a telecom fiber, coated with an Er(3+)-doped 70SiO(2)-30HfO(2) film, are presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Reproduced from a copy in ... the Henry E. Huntington Library and Art Gallery."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accompanied by supplements (Sonderheft) with also distinctive titles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A report is presented on the interesting bending effect of cladding mode resonances in fibre Bragg gratings (FBGs). It is observed that a serial of new cladding mode resonances can arise under bending and the new and the original cladding mode resonances have opposite trends in amplitude change and wavelength shift when the curvature varies. The discovery provides an effective new way to discriminate between bend and strain or bend and temperature when using only a single uniform FBG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A report is presented on the interesting bending effect of cladding mode resonances in fibre Bragg gratings (FBGs). It is observed that a serial of new cladding mode resonances can arise under bending and the new and the original cladding mode resonances have opposite trends in amplitude change and wavelength shift when the curvature varies. The discovery provides an effective new way to discriminate between bend and strain or bend and temperature when using only a single uniform FBG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a whispering gallery-mode (WGM) nanobump microresonator (NBMR) and develop its theory. This microresonator is formed by an asymmetric nanoscale-high deformation of the translationally symmetric optical fiber surface, which is employed in fabrication of surface nanoscale axial photonics (SNAP) structures. It is shown that an NBMR causes strong localization of WGMs near a closed ray (geodesic) at the fiber surface, provided that this ray is stable. Our theory explains and describes the experimentally observed localization of WGMs by NBMRs and is useful for the design and fabrication of SNAP devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In SNAP (Surface nanoscale axial photonics) resonators propagation of a slow whispering gallery mode along an optical fiber is controlled by nanoscale variation of the effective radius of the fiber [1]. Similar behavior can be realized in so - called nanobump microresonators in which the introduced variation of the effective radius is asymmetric, i.e. depends on the axial coordinate [2]. The possibilities of realization of such structures “on the fly” in an optical fiber by applying external electrostatic fields to it is discussed in this work. It is shown that local variations in effective radius of the fiber and in its refractive index caused by external electric fields can be large enough to observe SNAP structure - like behavior in an originally flat optical fiber. Theoretical estimations of the introduced refractive index and effective radius changes and results of finite element calculations are presented. Various effects are taken into account: electromechanical (piezoelectricity and electrostriction), electro-optical (Pockels and Kerr effects) and elasto-optical effect. Different initial fibre cross-sections are studied. The aspects of use of linear isotropic (such as silica) and non-linear anisotropic (such as lithium niobate) materials of the fiber are discussed. REFERENCES [1] M. Sumetsky, J. M. Fini, Opt. Exp. 19, 26470 (2011). [2] L. A. Kochkurov, M. Sumetsky, Opt. Lett. 40, 1430 (2015).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A frequency scanning O-mode reflectometer was used for studies of plasma density oscillations during local Alfven wave (LAW) excitation in the Tokamak Chauffage Alfven Bresilien (TCABR) at the frequency f(A) = 5 MHz. It was found that the spectrum of the reflectometer output signal, which consists mainly of the ""beat"" frequency f(B), is modified by the LAW excitation, and two additional frequency peaks appear, which are symmetrical in relation to the LAW excitation frequency f = f(A) +/- f(B). This result opens the possibility to improve the efficiency of studying the LAW induced density oscillations. The symmetry of these frequency peaks yields the possibility of finding the microwave frequency at which the reflectometer cutoff layer coincides with radial position of the LAW resonance zone in the TCABR tokamak. (C) 2011 American Institute of Physics. [doi:10.1063/1.3541756]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a possible technique for mode locking an atom laser, based on the generation of a dark soliton in a ring-shaped Bose-Einstein condensate, with repulsive atomic interactions. The soliton is a kink, with angular momentum per particle equal to (h) over bar /2. It emerges naturally when the condensate is stirred at the soliton velocity and cleansed with a periodic out coupler. The result is a replicating coherent field inside the atom laser, stabilized by topology. We give a numerical demonstration of the generation and stabilization of the soliton.