911 resultados para Wireless ad hoc networks
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
In this paper we propose an enhanced relay-enabled distributed coordination function (rDCF) for wireless ad hoc networks. The idea of rDCF is to use high data rate nodes to work as relays for the low data rate nodes. The relay helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission. rDCF achieves higher throughput over IEEE 802.11 distributed coordination function (DCF). The protocol is further enhanced for higher throughput and reduced energy. These enhancements result from the use of a dynamic preamble (i.e. using short preamble for the relay transmission) and also by reducing unnecessary overhearing (by other nodes not involved in transmission). We have modeled the energy consumption of rDCF, showing that rDCF provides an energy efficiency of 21.7% at 50 nodes over 802.11 DCF. Compared with the existing rDCF, the enhanced rDCF (ErDCF) scheme proposed in this paper yields a throughput improvement of 16.54% (at the packet length of 1000 bytes) and an energy saving of 53% at 50 nodes.
Resumo:
Opportunistic routing (OR) takes advantage of the broadcast nature and spatial diversity of wireless transmission to improve the performance of wireless ad-hoc networks. Instead of using a predetermined path to send packets, OR postpones the choice of the next-hop to the receiver side, and lets the multiple receivers of a packet to coordinate and decide which one will be the forwarder. Existing OR protocols choose the next-hop forwarder based on a predefined candidate list, which is calculated using single network metrics. In this paper, we propose TLG - Topology and Link quality-aware Geographical opportunistic routing protocol. TLG uses multiple network metrics such as network topology, link quality, and geographic location to implement the coordination mechanism of OR. We compare TLG with well-known existing solutions and simulation results show that TLG outperforms others in terms of both QoS and QoE metrics.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as T((nvmR (n))-1) if m = O(R-2 (n)), where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as T(n-1), when m = O(R-2(n)). The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.
Resumo:
The performance of wireless networks is limited by multiple access interference (MAI) in the traditional communication approach where the interfered signals of the concurrent transmissions are treated as noise. In this paper, we treat the interfered signals from a new perspective on the basis of additive electromagnetic (EM) waves and propose a network coding based interference cancelation (NCIC) scheme. In the proposed scheme, adjacent nodes can transmit simultaneously with careful scheduling; therefore, network performance will not be limited by the MAI. Additionally we design a space segmentation method for general wireless ad hoc networks, which organizes network into clusters with regular shapes (e.g., square and hexagon) to reduce the number of relay nodes. The segmentation methodworks with the scheduling scheme and can help achieve better scalability and reduced complexity. We derive accurate analytic models for the probability of connectivity between two adjacent cluster heads which is important for successful information relay. We proved that with the proposed NCIC scheme, the transmission efficiency can be improved by at least 50% for general wireless networks as compared to the traditional interference avoidance schemes. Numeric results also show the space segmentation is feasible and effective. Finally we propose and discuss a method to implement the NCIC scheme in a practical orthogonal frequency division multiplexing (OFDM) communications networks. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the capacity improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). While it can be shown that there is a capacity gain by PNC, we can prove that the per session throughput capacity with PNC is ? (nR(n))), where n is the total number of nodes, R(n) is the communication range, and each multicast session consists of a constant number of sinks. The result implies that PNC cannot improve the capacity order of multicast in random WAHNs, which is different from the intuition that PNC may improve the capacity order as it allows simultaneous signal reception and combination. Copyright © 2010 ACM.
Resumo:
In this paper, we investigate the hop distance optimization problem in ad hoc networks where cooperative multiinput- single-output (MISO) is adopted to improve the energy efficiency of the network. We first establish the energy model of multihop cooperative MISO transmission. Based on the model, the energy consumption per bit of the network with high node density is minimized numerically by finding an optimal hop distance, and, to get the global minimum energy consumption, both hop distance and the number of cooperating nodes around each relay node for multihop transmission are jointly optimized. We also compare the performance between multihop cooperative MISO transmission and single-input-single-output (SISO) transmission, under the same network condition (high node density). We show that cooperative MISO transmission could be energyinefficient compared with SISO transmission when the path-loss exponent becomes high. We then extend our investigation to the networks with varied node densities and show the effectiveness of the joint optimization method in this scenario using simulation results. It is shown that the optimal results depend on network conditions such as node density and path-loss exponent, and the simulation results are closely matched to those obtained using the numerical models for high node density cases.
Resumo:
Cochin University of Science & Technology
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Resumo:
The security of the two party Diffie-Hellman key exchange protocol is currently based on the discrete logarithm problem (DLP). However, it can also be built upon the elliptic curve discrete logarithm problem (ECDLP). Most proposed secure group communication schemes employ the DLP-based Diffie-Hellman protocol. This paper proposes the ECDLP-based Diffie-Hellman protocols for secure group communication and evaluates their performance on wireless ad hoc networks. The proposed schemes are compared at the same security level with DLP-based group protocols under different channel conditions. Our experiments and analysis show that the Tree-based Group Elliptic Curve Diffie-Hellman (TGECDH) protocol is the best in overall performance for secure group communication among the four schemes discussed in the paper. Low communication overhead, relatively low computation load and short packets are the main reasons for the good performance of the TGECDH protocol.
Resumo:
HELLO protocol or neighborhood discovery is essential in wireless ad hoc networks. It makes the rules for nodes to claim their existence/aliveness. In the presence of node mobility, no fix optimal HELLO frequency and optimal transmission range exist to maintain accurate neighborhood tables while reducing the energy consumption and bandwidth occupation. Thus a Turnover based Frequency and transmission Power Adaptation algorithm (TFPA) is presented in this paper. The method enables nodes in mobile networks to dynamically adjust both their HELLO frequency and transmission range depending on the relative speed. In TFPA, each node monitors its neighborhood table to count new neighbors and calculate the turnover ratio. The relationship between relative speed and turnover ratio is formulated and optimal transmission range is derived according to battery consumption model to minimize the overall transmission energy. By taking advantage of the theoretical analysis, the HELLO frequency is adapted dynamically in conjunction with the transmission range to maintain accurate neighborhood table and to allow important energy savings. The algorithm is simulated and compared to other state-of-the-art algorithms. The experimental results demonstrate that the TFPA algorithm obtains high neighborhood accuracy with low HELLO frequency (at least 11% average reduction) and with the lowest energy consumption. Besides, the TFPA algorithm does not require any additional GPS-like device to estimate the relative speed for each node, hence the hardware cost is reduced.