997 resultados para Wing Morphology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the wing morphology, echolocation calls, diet and emergence time of the black-bearded tomb bat (Taphozous melanopogon) from May to October 2006 in Guangxi Province, southwest China. Taphozous melanopogon has wings with high aspect ratio, high loading and pointed wing-tip shape-characteristics associated with fast flight in open space. This species usually produces low-intensity, low frequency, and frequency-modulated (FM) calls usually containing up to four harmonics, with most energy in the second (or sometimes third) harmonic. The diet of this species consists mostly of Lepidoptera and Hemiptera. Timing of evening emergence is correlated with the time of sunset. This is the first study to describe the flight and echolocation behavior of this species in China, and opens the way for future studies of its biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Echolocation calls of 119 bats belonging to 12 species in three families from Antillean islands of Puerto Rico, Dominica, and St. Vincent were recorded by using time-expansion methods. Spectrograms of calls and descriptive statistics of five temporal and frequency variables measured from calls are presented. The echolocation calls of many of these species, particularly those in the family Phyllostomidae, have not been described previously. The wing morphology of each taxon is described and related to the structure of its echolocation calls and its foraging ecology. Of slow aerial-hawking insectivores, the Mormoopidae and Natalidae Mormoops blainvillii, Pteronotus davyi davyi, P. quadridens fuliginosus, and Natalus stramineus stramineus can forage with great manoeuvrability in background-cluttered space (close to vegetation), and are able to hover. Pteronotus parnellii portoricensis is able to fly and echolocate in highly-cluttered space (dense vegetation). Among frugivores, nectarivores and omnivores in the family Phyllostomidae, Brachyphylla cavernarum intermedia is adapted to foraging in the edges of vegetation in background-cluttered space, while Erophylla bombifrons bombifrons, Glossophaga longirostris rostrata, Artibeus jamaicensis jamaicensis, A. jamaicensis schwartzi and Stenoderma rufum darioi are adapted to foraging under canopies in highly-cluttered space and do not have speed or efficiency in commuting flight. In contrast, Monophyllus plethodon luciae, Sturnira lilium angeli and S. lilium paulsoni are adapted to fly in highly-cluttered space, but can also fly fast and efficiently in open areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied the wing morphology, echolocation calls, foraging behaviour and flight speed of Tylonycteris pachypus and Tylonycteris robustula in Longzhou County, South China during the summer (June–August) of 2005. The wingspan, wing loading and aspect ratio of the two species were relatively low, and those of T. pachypus were lower compared with T. robustula. The echolocation calls of T. pachypus and T. robustula consist of a broadband frequency modulated (FM) sweep followed by a short narrowband FM sweep. The dominant frequency of calls of T. pachypus was 65.1 kHz, whereas that of T. robustula was 57.7 kHz. The call frequencies (including highest frequency of the call, lowest frequency of the call and frequency of the call that contained most energy) of T. pachypus were higher than those of T. robustula, and the pulse duration of the former was longer than that of the latter. The inter-pulse interval and bandwidth of the calls were not significantly different between the two species. Tylonycteris pachypus foraged in more complex environments than T. robustula, although the two species were both netted in edge habitats (around trees or houses), along pathways and in the tops of trees. Tylonycteris pachypus flew slower (straight level flight speed, 4.3 m s−1) than T. robustula (straight level flight speed, 4.8 m s−1). We discuss the relationship between wing morphology, echolocation calls, foraging behaviour and flight speed, and demonstrate resource partitioning between these two species in terms of morphological and behavioural factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intermediate leaf-nosed bat (Hipposideros larvatus) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis, which is suggested to be a species distinct from Hipposideros larvatus. Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Our purpose was to assess how pairs of sibling horseshoe bats coexists when their morphology and echolocation are almost identical. We collected data on echolocation, wing morphology, diet, and habitat use of sympatric Rhinolophus mehelyi and R. euryale. We compared our results with literature data collected in allopatry with similar protocols and at the same time of the year (breeding season). Results:Echolocation frequencies recorded in sympatry for R. mehelyi (mean = 106.8 kHz) and R. euryale (105.1 kHz) were similar to those reported in allopatry (R. mehelyi 105–111 kHz; R. euryale 101–109 kHz). Wing parameters were larger in R. mehelyi than R. euryale for both sympatric and allopatric conditions. Moths constitute the bulk of the diet of both species in sympatry and allopatry, with minor variation in the amounts of other prey. There were no inter-specific differences in the use of foraging habitats in allopatry in terms of structural complexity, however we found inter-specific differences between sympatric populations: R. mehelyi foraged in less complex habitats. The subtle inter-specific differences in echolocation frequency seems to be unlikely to facilitate dietary niche partitioning; overall divergences observed in diet may be explained as a consequence of differential prey availability among foraging habitats. Inter-specific differences in the use of foraging habitats in sympatry seems to be the main dimension for niche partitioning between R. mehelyi and R. euryale, probably due to letter differences in wing morphology. Conclusions: Coexistence between sympatric sibling horseshoe bats is likely allowed by a displacement in spatial niche dimension, presumably due to the wing morphology of each species, and shifts the niche domains that minimise competition. Effective measures for conservation of sibling/similar horseshoe bats should guarantee structural diversity of foraging habitats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Throughout the world, the increasing use of land for agriculture has been associated with extensive loss and fragmentation of natural habitats and, frequently, the degradation of remaining habitats. The effects of such habitat changes have been well studied for some faunal groups, but little is known of their consequences for bats. The aim of this study was to investigate the ecology and conservation of an assemblage of insectivorous bats in a rural landscape, with particular focus on their foraging and roosting requirements. This increased knowledge will, hopefully, assist the formulation of policy and management decisions to ensure the long-term survival of bats in these altered environments. The distribution and abundance of insectivorous bats in the Northern Plains of Victoria was investigated to determine the impacts of land-use change and to identify factors influencing the distribution of bats in rural landscapes. Thirteen species of insectivorous bats were recorded across the region by sampling at 184 sites. Two species were rare, but the remaining 11 species were widespread and occurred in all types of remnant wooded vegetation, ranging from large blocks (≥200 ha) to small isolated remnants (≤5 ha) and scattered trees in cleared farm paddocks. There was no significant difference between remnant types in the relative abundance of bat species, in species richness, or in the composition of bat assemblages at study sites. In a subsequent study, no difference in the activity levels of bats was found between remnants with different tree densities, ranging from densely-vegetated blocks to single paddock trees. However, sites in open paddocks devoid of trees differed significantly from all types of wooded remnants and had significantly lower levels of bat activity and a different species composition. In highly cleared and modified landscapes, all native vegetation has value to bats, even the smallest remnant, roadside and single paddock tree. Roost sites are a key habitat requirement for bats and may be a limiting resource in highly modified environments. Two species, the lesser long-eared bat Nyctophilus geoffroyi and Gould's wattled bat Chalinolobus gouldii, were investigated as a basis for understanding the capacity of bats to survive in agricultural landscapes. These species have different wing morphologies, which may be influential in how they use the landscape, and anecdotal evidence suggested differences in their roosting ecology. Roosting ecology was examined using radio-tracking to locate 376 roosts in two study areas with contrasting tree cover in northern Victoria. Both species were highly selective in the location of their roosts in the landscape, in roost-site selection and in roosting behaviour, and responded differently to differing levels of availability of roosts. The Barmah-Picola study area incorporated remnant vegetation in farmland and an adjacent extensive floodplain forest (Barmah forest). Male N. geojfroyi roosted predominantly within 3 km of their foraging areas in remnants in farmland. However, most female N. geoffroyi, and both sexes of C. gouldii, roosted in Barmah forest up to 12 km from their foraging areas in farmland remnants. These distances were greater than previously recorded for these species and further than predicted by wing morphology. In contrast, in the second study area (Naring) where only small remnants of wooded vegetation remain in farmland, individuals of both species moved significantly shorter distances between roost sites and foraging areas. There were marked inter- and intra-specific differences in the roosts selected. C. gouldii used similar types of roosts in both areas - predominantly dead spouts in large, live trees. N. geoffroyi used a broader range of roost types, especially in the farmland environment. Roosts were typically under bark and in fissures, with males in particular also using anthropogenic structures. A strong preference was shown by both sexes for roosts in dead trees, and entrance dimensions of roosts were consistently narrow (2.5 cm). In Barmah forest, maternity roosts used by N. geoffroyi were predominantly in narrow fissures in large-diameter, dead trees, while at Naring maternity roosts were also found under bark, in buildings, and in small-diameter, live and dead trees. The number of roost trees that are required for an individual or colony is influenced by the frequency with which bats move between roosts, the proportion of roosts that are re-used, the distance between consecutive roosts, and the size of roosting colonies. Both species roosted in small colonies and regularly shifted roost sites within a discrete roost area. These behavioural traits suggest that a high density of roost sites is required. There were marked differences in these aspects of behaviour between individuals roosting in Barmah forest and in the fragmented rural landscape. At Naring, N. geqffroyi remained in roosts for longer periods and moved greater distances between consecutive roosts than in Barmah forest. In contrast, C. gouldii used a smaller pool of roosts in the farmland environment by re-using roosts more frequently. Within Barmah forest, there is an extensive area of forest but the density of hollow-bearing trees is reduced due to timber harvesting and silvicultural practices. Individuals were selective in the location of their roosting areas, with both species selecting parts of the forest that contained higher densities of their preferred roost trees than was generally available in the forest. In contrast, in farmland at Naring, where there were small pockets of remnant vegetation with high densities of potential roost sites surrounded by cleared paddocks with few roosting opportunities, little selection was shown. This suggests that in Barmah forest the density of trees with potential roosts is lower than optimal, while in farmland roosting resources may be adequate in woodland remnants, but limiting at the landscape scale since more than 95% of the landscape now provides no roosting opportunities. Insectivorous bats appear to be less severely affected than some other faunal groups by habitat fragmentation and land-use change. A highly developed capacity for flight, the spatial scale at which they move and their ability to cross open areas means that they can regularly move among multiple landscape elements, rather than depend on single remnants for all their resources. In addition, bats forage and roost mainly at elevated levels in trees and so are less sensitive to degradation of wooded habitats at ground level. Although seemingly resilient to habitat fragmentation, insectivorous bats are fundamentally dependent on trees for roosting and foraging, and so are vulnerable to habitat loss and ongoing rural tree decline. Protection of the remaining large old trees and measures to ensure regeneration to provide ongoing replacement of hollow-bearing trees through time are critical to ensure the long-term conservation of bats in rural landscapes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Split sting is the name given to a nonfunctional honey bee sting characterized by lancets not attached to the stylet. It has appeared in a mutant line in Brazil, and has provoked interest as a possible means to reduce honey bee colony defensiveness. We induced this alteration in Africanized Apis mellifera L. workers and queens by maintaining pupae at 20 degrees C. In particular, we determined the pupal phase most susceptible to alterations in the sting caused by cold treatment, and we investigated whether this treatment also affected survival to the adult phase and wing morphology. The highest frequency of split sting was detected in workers treated at the pink-eyed pupal phase. The lowest frequency was observed in the bees treated at the oldest worker pupal phase studied (brown-eyed pupae with lightly pigmented cuticle). Both queen pupal phases tested (white and pink-eyed pupae) were equally sensitive and produced high percentages of adults with split sting. However, the 20 degrees C treatment of workers and queens, at the different pupal phases, resulted in high frequencies of adults with deformed wings. Also, fewer workers and queens treated at the earlier pupal stages reached adult emergence. There was also an arrest in developmental time, corresponding to the period of cold treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

African honey bees, introduced to Brazil in 1956, rapidly dominated the previously introduced European subspecies. To better understand how hybridization between these different types of bees proceeded, we made geometric morphometric analyses of the wing venation patterns of specimens resulting from crosses made between Africanized honey bees (predominantly Apis mellifera scutellata) and Italian honey bees (A. mellifera ligustica) from 1965 to 1967, at the beginning of the Africanization process, in an apiary about 150 km from the original introduction site. Two virgin queens reared from an Italian parental were instrumentally inseminated with semen from drones from an Africanized parental. Six F-1 queens from one of these colonies were open mated with Africanized drones. Resultant F-1 drones were backcrossed to 50 Italian and 50 Africanized parental queens. Five backcross workers were collected from each of eight randomly selected colonies of each type of backcross (N = 5 bees x 8 colonies x 2 types of backcrosses). The F-1 progeny (40 workers and 30 drones) was found to be morphologically closer to the Africanized than to the European parental (N = 20 drones and 40 workers, each); Mahalanobis square distances = 21.6 versus 25.8, respectively, for the workers, and 39.9 versus 46.4, respectively, for the drones. The worker progenies of the backcrosses (N = 40, each) were placed between the respective parental and the F-1 progeny, although closer to the Africanized than to the Italian parentals (Mahalanobis square distance = 6.2 versus 12.1, respectively). Consequently, the most common crosses at the beginning of the Africanization process would have generated individuals more similar to Africanized than to Italian bees. This adds a genetic explanation for the rapid changes in the populational morphometric profile in recently colonized areas. Africanized alleles of wing venation pattern genes are apparently dominant and epistatic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphometric methods permit identification of insect species and are an aid for taxonomy. Quantitative wing traits were used to identify male euglossine bees. Landmark- and outline-based methods have been primarily used independently. Here, we combine the two methods using five Euglossa. Landmark-based methods correctly classified 84% and outline-based 77%, but an integrated analysis correctly classified 91% of samples. Some species presented significantly high reclassification percentages when only wing cell contour was considered, and correct identification of specimens with damaged wings was also obtained using this methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bats are animals that posses high maneuvering capabilities. Their wings contain dozens of articulations that allow the animal to perform aggressive maneuvers by means of controlling the wing shape during flight (morphing-wings). There is no other flying creature in nature with this level of wing dexterity and there is biological evidence that the inertial forces produced by the wings have a key role in the attitude movements of the animal. This can inspire the design of highly articulated morphing-wing micro air vehicles (not necessarily bat-like) with a significant wing-to-body mass ratio. This thesis presents the development of a novel bat-like micro air vehicle (BaTboT) inspired by the morphing-wing mechanism of bats. BaTboT’s morphology is alike in proportion compared to its biological counterpart Cynopterus brachyotis, which provides the biological foundations for developing accurate mathematical models and methods that allow for mimicking bat flight. In nature bats can achieve an amazing level of maneuverability by combining flapping and morphing wingstrokes. Attempting to reproduce the biological wing actuation system that provides that kind of motion using an artificial counterpart requires the analysis of alternative actuation technologies more likely muscle fiber arrays instead of standard servomotor actuators. Thus, NiTinol Shape Memory Alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. This antagonistic configuration of SMA-muscles response to an electrical heating power signal to operate. This heating power is regulated by a proper controller that allows for accurate and fast SMA actuation. Morphing-wings will enable to change wings geometry with the unique purpose of enhancing aerodynamics performance. During the downstroke phase of the wingbeat motion both wings are fully extended aimed at increasing the area surface to properly generate lift forces. Contrary during the upstroke phase of the wingbeat motion both wings are retracted to minimize the area and thus reducing drag forces. Morphing-wings do not only improve on aerodynamics but also on the inertial forces that are key to maneuver. Thus, a modeling framework is introduced for analyzing how BaTboT should maneuver by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Motivated by the biological fact about the influence of wing inertia on the production of body accelerations, an attitude controller is proposed. The attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands. This novel flight control approach is aimed at incrementing net body forces (Fnet) that generate propulsion. Mimicking the way how bats take advantage of inertial and aerodynamical forces produced by the wings in order to both increase lift and maneuver is a promising way to design more efficient flapping/morphing wings MAVs. The novel wing modulation strategy and attitude control methodology proposed in this thesis provide a totally new way of controlling flying robots, that eliminates the need of appendices such as flaps and rudders, and would allow performing more efficient maneuvers, especially useful in confined spaces. As a whole, the BaTboT project consists of five major stages of development: - Study and analysis of biological bat flight data reported in specialized literature aimed at defining design and control criteria. - Formulation of mathematical models for: i) wing kinematics, ii) dynamics, iii) aerodynamics, and iv) SMA muscle-like actuation. It is aimed at modeling the effects of modulating wing inertia into the production of net body forces for maneuvering. - Bio-inspired design and fabrication of: i) skeletal structure of wings and body, ii) SMA muscle-like mechanisms, iii) the wing-membrane, and iv) electronics onboard. It is aimed at developing the bat-like platform (BaTboT) that allows for testing the methods proposed. - The flight controller: i) control of SMA-muscles (morphing-wing modulation) and ii) flight control (attitude regulation). It is aimed at formulating the proper control methods that allow for the proper modulation of BaTboT’s wings. - Experiments: it is aimed at quantifying the effects of properly wing modulation into aerodynamics and inertial production for maneuvering. It is also aimed at demonstrating and validating the hypothesis of improving flight efficiency thanks to the novel control methods presented in this thesis. This thesis introduces the challenges and methods to address these stages. Windtunnel experiments will be oriented to discuss and demonstrate how the wings can considerably affect the dynamics/aerodynamics of flight and how to take advantage of wing inertia modulation that the morphing-wings enable to properly change wings’ geometry during flapping. Resumen: Los murciélagos son mamíferos con una alta capacidad de maniobra. Sus alas están conformadas por docenas de articulaciones que permiten al animal maniobrar gracias al cambio geométrico de las alas durante el vuelo. Esta característica es conocida como (alas mórficas). En la naturaleza, no existe ningún especimen volador con semejante grado de dexteridad de vuelo, y se ha demostrado, que las fuerzas inerciales producidas por el batir de las alas juega un papel fundamental en los movimientos que orientan al animal en vuelo. Estas características pueden inspirar el diseño de un micro vehículo aéreo compuesto por alas mórficas con redundantes grados de libertad, y cuya proporción entre la masa de sus alas y el cuerpo del robot sea significativa. Esta tesis doctoral presenta el desarrollo de un novedoso robot aéreo inspirado en el mecanismo de ala mórfica de los murciélagos. El robot, llamado BaTboT, ha sido diseñado con parámetros morfológicos muy similares a los descritos por su símil biológico Cynopterus brachyotis. El estudio biológico de este especimen ha permitido la definición de criterios de diseño y modelos matemáticos que representan el comportamiento del robot, con el objetivo de imitar lo mejor posible la biomecánica de vuelo de los murciélagos. La biomecánica de vuelo está definida por dos tipos de movimiento de las alas: aleteo y cambio de forma. Intentar imitar como los murciélagos cambian la forma de sus alas con un prototipo artificial, requiere el análisis de métodos alternativos de actuación que se asemejen a la biomecánica de los músculos que actúan las alas, y evitar el uso de sistemas convencionales de actuación como servomotores ó motores DC. En este sentido, las aleaciones con memoria de forma, ó por sus siglas en inglés (SMA), las cuales son fibras de NiTinol que se contraen y expanden ante estímulos térmicos, han sido usados en este proyecto como músculos artificiales que actúan como bíceps y tríceps de las alas, proporcionando la funcionalidad de ala mórfica previamente descrita. De esta manera, los músculos de SMA son mecánicamente posicionados en una configuración antagonista que permite la rotación de las articulaciones del robot. Los actuadores son accionados mediante una señal de potencia la cual es regulada por un sistema de control encargado que los músculos de SMA respondan con la precisión y velocidad deseada. Este sistema de control mórfico de las alas permitirá al robot cambiar la forma de las mismas con el único propósito de mejorar el desempeño aerodinámico. Durante la fase de bajada del aleteo, las alas deben estar extendidas para incrementar la producción de fuerzas de sustentación. Al contrario, durante el ciclo de subida del aleteo, las alas deben contraerse para minimizar el área y reducir las fuerzas de fricción aerodinámica. El control de alas mórficas no solo mejora el desempeño aerodinámico, también impacta la generación de fuerzas inerciales las cuales son esenciales para maniobrar durante el vuelo. Con el objetivo de analizar como el cambio de geometría de las alas influye en la definición de maniobras y su efecto en la producción de fuerzas netas, simulaciones y experimentos han sido llevados a cabo para medir cómo distintos patrones de modulación de las alas influyen en la producción de aceleraciones lineales y angulares. Gracias a estas mediciones, se propone un control de vuelo, ó control de actitud, el cual incorpora información inercial de las alas para la definición de referencias de aceleración angular. El objetivo de esta novedosa estrategia de control radica en el incremento de fuerzas netas para la adecuada generación de movimiento (Fnet). Imitar como los murciélagos ajustan sus alas con el propósito de incrementar las fuerzas de sustentación y mejorar la maniobra en vuelo es definitivamente un tópico de mucho interés para el diseño de robots aéros mas eficientes. La propuesta de control de vuelo definida en este trabajo de investigación podría dar paso a una nueva forma de control de vuelo de robots aéreos que no necesitan del uso de partes mecánicas tales como alerones, etc. Este control también permitiría el desarrollo de vehículos con mayor capacidad de maniobra. El desarrollo de esta investigación se centra en cinco etapas: - Estudiar y analizar el vuelo de los murciélagos con el propósito de definir criterios de diseño y control. - Formular modelos matemáticos que describan la: i) cinemática de las alas, ii) dinámica, iii) aerodinámica, y iv) actuación usando SMA. Estos modelos permiten estimar la influencia de modular las alas en la producción de fuerzas netas. - Diseño y fabricación de BaTboT: i) estructura de las alas y el cuerpo, ii) mecanismo de actuación mórfico basado en SMA, iii) membrana de las alas, y iv) electrónica abordo. - Contro de vuelo compuesto por: i) control de la SMA (modulación de las alas) y ii) regulación de maniobra (actitud). - Experimentos: están enfocados en poder cuantificar cuales son los efectos que ejercen distintos perfiles de modulación del ala en el comportamiento aerodinámico e inercial. El objetivo es demostrar y validar la hipótesis planteada al inicio de esta investigación: mejorar eficiencia de vuelo gracias al novedoso control de orientación (actitud) propuesto en este trabajo. A lo largo del desarrollo de cada una de las cinco etapas, se irán presentando los retos, problemáticas y soluciones a abordar. Los experimentos son realizados utilizando un túnel de viento con la instrumentación necesaria para llevar a cabo las mediciones de desempeño respectivas. En los resultados se discutirá y demostrará que la inercia producida por las alas juega un papel considerable en el comportamiento dinámico y aerodinámico del sistema y como poder tomar ventaja de dicha característica para regular patrones de modulación de las alas que conduzcan a mejorar la eficiencia del robot en futuros vuelos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nos estudos sobre a teoria da Seleção Sexual, as libélulas têm sido amplamente estudadas devido à grande variedade de padrões comportamentais, de coloração e táticas reprodutivas. Como forma de demonstrar táticas reprodutivas adotadas por duas espécies de libélulas, esta dissertação teve como objetivos principais: i) investigar o papel de traços secundários como a coloração corporal na competição intra-sexual de uma espécie territorial e ii) analisar se os traços corporais como tamanho e morfologia das asas predizem a tática de acasalamento adotada por machos de uma espécie nãoterritorial. Sugere-se que a coloração corporal pode predizer o resultado de lutas e também se correlacionar positivamente com a condição física dos machos territoriais de Tigriagrion aurantinigrum. Ademais, traços corporais como o tamanho e a morfologia das asas influenciam na tática reprodutiva utilizada por machos não-territoriais de Epipleoneura williamsoni. Portanto, com os resultados obtidos, conclui-se que a variação nos sinais visuais exerce um papel essencial na comunicação animal e na resolução de conflitos, indicando ainda que pode haver uma sinalização da condição física dos machos. Além disso, os resultados mostraram evidências em como diferentes táticas reprodutivas se relacionam com traços corporais como agilidade e tamanho corporal, os quais podem influenciar no sucesso reprodutivo dos indivíduos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans un contexte d’aménagement forestier, la dynamique spatio-temporelle des habitats est susceptible d’isoler les oiseaux nicheurs durant des périodes de plusieurs années, exerçant une pression pour une grande mobilité chez les oiseaux en dispersion. Les grandes distances migratoires de certaines espèces s’ajoutent aux pressions favorisant la mobilité. Par contre, les déplacements dans un feuillage dense peuvent imposer de fortes contraintes aux attributs conférant une grande mobilité aux oiseaux. Du point de vue de la conservation, il serait très utile de prévoir la réponse des différentes espèces d’oiseaux à la fragmentation de leur habitat, à partir de leurs traits écologiques. La morphologie des ailes d’oiseau, notamment la projection des rémiges primaires, est un indicateur clé de mobilité, et pourrait donc servir à de telles prédictions. Malgré les contraintes aérodynamiques, la projection primaire varie considérablement d’une espèce à l’autre. Afin de mieux comprendre les facteurs déterminant cette diversité, j’ai mesuré les ailes de 1017 spécimens vivants de 22 espèces d’oiseaux à la Forêt Montmorency (Québec) en 2013 et 2014. Conformément à mes prédictions, les espèces d’oiseaux dont la projection des primaires était plus longue migrent sur de plus longues distances et vivent dans des habitats ayant un faible indice de densité végétale. Par contre, je n’ai trouvé aucun lien entre la densité moyenne des populations en nidification, un indicateur d’isolement, et la morphologie des ailes. Ces résultats suggèrent que les réponses variées des oiseaux forestiers face à la fragmentation de leurs habitats seraient difficilement prévisibles par la morphologie liée au vol. Mots clés : fragmentation d’habitat, isolement de l’habitat, morphologie des ailes, écomorphologie, distance migratoire, densité de végétation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the echolocation calls, flight morphology and diet of the endemic Chinese bat Myotis pequinius Thomas, 1908. Orientation calls are broadband, and reach low terminal frequencies. Diet comprised 80% beetles by volume. Wing shape and call design suggest that the bats fly in cluttered habitats, and the possession of moderately long ears and the dietary composition imply they forage at least sometimes by gleaning. Myotis pequinius resembles a larger Oriental version of the western Palaearctic species M. nattereri. Phylogenetic analysis based on sequences of the cytochrome b gene of mitochondrial DNA (1,140 base pairs) from a range of Palaearctic Myotis species confirmed that M. pequinius is close to the nattereri group, and is a sister-species to the eastern Palaearctic M. bombinus. One bat sequenced from China could not be identified from available species descriptions. It was smaller than M. pequinius, and also differed from it in sequence divergence by 6.7%, suggesting the existence of additional, cryptic taxonomic diversity in this group. Our phylogenetic analysis also supports the recognition of M. schaubi as a species distinct from M. nattereri in Transcaucasia and south-western Asia. Myotis nattereri tschuliensis is more closely related to M. schaubi than to M. nattereri, and is best considered either as a subspecies of M. schaubi, or possibly as a distinct species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle development is a multistep process which includes myoblast diversification, proliferation, migration, fusion, differentiation and growth. A hierarchical exhibition of myogenic factors is important for dexterous execution of progressive events in muscle formation. EWG (erect wing) is a transcription factor known to have a role in indirect flight muscle development (IFM) in Drosophila. We marked out the precise spatio-temporal expression profile of EWG in the myoblasts, and in the developing muscles. Mutant adult flies null for EWG in myoblasts show variable number of IFM, suggesting that EWG is required for patterning of the IFM. The remnant muscle found in the EWG null flies show proper assembly of the structural proteins, which implies that some myoblasts manage to fuse, develop and differentiate normally indicating that EWG is not required for differentiation program per se. However, when EWG expression is extended beyond its expression window in a wild type background, muscle thinning is observed implying EWG function in protein synthesis inhibition. Mis-expression studies in wing disc myoblasts hinted at its role in myoblast proliferation. We thus conclude that EWG is important for regulating fusion events which in turn decides the IFM pattern. Also IFM in EWG null mutants show clumps containing broken fibres and an altered mitochondrial morphology. The vertebrate homolog of EWG is nuclear respiratory factor1 (NRF1) which is known to have a function in mitochondrial biogenesis and protection against oxidative stress. Gene expression for inner mitochondrial membrane protein, Opa1-like was found to be absent in these mutants. Also, these flies were more sensitive to oxidative stress, indicating a compromised mitochondrial functioning. Our results therefore demonstrate that EWG functions in maintaining muscles’ structural integrity by ensuing proper mitochondrial activity.