887 resultados para Wine and wine making - Chemistry
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The ethyl carbamate is a compound present in most foods yeast-distillates; due to its carcinogenic potential, national legislation has established a limit of 0.150 µg / mL for spirits, so the values above the same, pose a threat to both public health as well for the economic sector by preventing the export of these products. The aim of this work is to provide the optimization of an analytical method employing the technique of gas chromatography equipped with flame ionization detector (FID) to determine the concentration levels of ethyl carbamate in some samples of wine. The use of ethyl acetate as solvent employed in the extraction, the ethyl carbamate present in wine samples proved to be suitable, where Recoveries were between 97.6 to 103.3% (m / m), with a standard deviation for between 0.56 to 3.50%. The concentrations of ethyl carbamate in particular wine samples vary between 3.22 µg / ml and 3.80 µg / mL, with a mean of 3.48 µg / mL. These valuesare all above the limit set by law. Thus, the results indicate the need for changes in the process of wine production, in order to control the levels of the substance
Resumo:
The link between recognition and replication is fundamental to the operation of the immune system. In recent years, modeling this process in a format of phage-display combinatorial libraries has afforded a powerful tool for obtaining valuable antibodies. However, the ability to readily select and isolate rare catalysts would expand the scope of library technology. A technique in which phage infection controlled the link between recognition and replication was applied to show that chemistry is a selectable process. An antibody that operated by covalent catalysis to form an acyl intermediate restored phage infectivity and allowed selection from a library in which the catalyst constituted 1 in 105 members. Three different selection approaches were examined for their convenience and generality. Incorporating these protocols together with well known affinity labels and mechanism-based inactivators should allow the procurement of a wide range of novel catalytic antibodies.