1000 resultados para Wilkes-land


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources. This article is protected by copyright. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tolerance of desiccation was examined in three species of moss, Grimmia antarctici Card., Ceratodon purpureus (Hedw.) Brid. and Bryum pseudotriquetrum (Hedw.) Gaertn., Meyer et Scherb. collected from two sites of contrasting water availability in the Windmill Islands, continental Antarctica. Physiological tolerance to desiccation was measured using chlorophyll fluorescence in plugs of moss during natural drying in the laboratory. Differences in relative water content, rate of drying and the response of photosynthesis to desiccation were observed among the three species and between sites. Of the three species studied, G. antarctici showed the lowest capacity to sustain photosynthetic processes during desiccation, B. pseudotriquetrum had an intermediate response and showed the greatest plasticity and C. purpureus showed the greatest capacity to sustain photosynthesis during desiccation. These results fit well with the known distribution of the three species with G. antarctici being limited to relatively wet sites, C. purpureus being common in the driest sites and B. pseudotriquetrum showing a wide distribution between these two extremes. Levels of soluble carbohydrates were also measured in these samples following desiccation and these indicate the presence of stachyose, an oligosaccharide known to be important in desiccation tolerance in seeds, in B. pseudotriquetrum. Both gross morphology and carbohydrate content are likely to contribute to differences in desiccation tolerance of the moss species. These results indicate that if the Casey region continues to dry out, as a result of local geological uplifting or global climate change, we would expect to see not only reductions in the moss community but also changes in community composition. G. antarctici is likely to become more limited in distribution as C. purpureus and B. pseudotriquetrum expand into drying areas.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The early Eocene epoch was characterized by extreme global warmth, which in terrestrial settings was characterized by an expansion of near-tropical vegetation belts into the high latitudes. During the middle to late Eocene, global cooling caused the retreat of tropical vegetation to lower latitudes. In high-latitude settings, near-tropical vegetation was replaced by temperate floras. This floral change has recently been traced as far south as Antarctica, where along the Wilkes Land margin paratropical forests thrived during the early Eocene and temperate Nothofagus forests developed during the middle Eocene. Here we provide both qualitative and quantitative palynological data for this floral turnover based on a sporomorph record recovered at Integrated Ocean Drilling Program (IODP) Site U1356 off the Wilkes Land margin. Following the nearest living relative concept and based on a comparison with modern vegetation types, we examine the structure and diversity patterns of the Eocene vegetation along the Wilkes Land margin. Our results indicate that the early Eocene forests along the Wilkes Land margin were characterized by a diverse canopy composed of plants that today occur in tropical settings; their richness pattern was similar to that of present-day forests from New Caledonia. The middle Eocene forests were characterized by a canopy dominated by Nothofagus and exhibited richness patterns similar to modern Nothofagus forests from New Zealand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of snow on East Antarctic sea ice off Wilkes Land were examined during the Sea Ice Physics and Ecosystem Experiment (SIPEX) in late winter of 2007, focusing on the interaction with sea ice. This observation includes 11 transect lines for the measurement of ice thickness, freeboard, and snow depth, 50 snow pits on 13 ice floes, and diurnal variation of surface heat flux on three ice floes. The detailed profiling of topography along the transects and the d18O, salinity, and density datasets of snow made it possible to examine the snow-sea-ice interaction quantitatively for the first time in this area. In general, the snow displayed significant heterogeneity in types, thickness (mean: 0.14 +- 0.13 m), and density (325 +- 38 kg/m**3), as reported in other East Antarctic regions. High salinity was confined to the lowest 0.1 m. Salinity and d18O data within this layer revealed that saline water originated from the surface brine of sea ice in 20% of the total sites and from seawater in 80%. From the vertical profiles of snow density, bulk thermal conductivity of snow was estimated as 0.15 W/K/m on average, only half of the value used for numerical sea-ice models. Although the upward heat flux within snow estimated with this value was significantly lower than that within ice, it turned out that a higher value of thermal conductivity (0.3 to 0.4 W/K/m) is preferable for estimating ice growth amount in current numerical models. Diurnal measurements showed that upward conductive heat flux within the snow and net long-wave radiation at the surface seem to play important roles in the formation of snow ice from slush. The detailed surface topography allowed us to compare the air-ice drag coefficients of ice and snow surfaces under neutral conditions, and to examine the possibility of the retrieval of ice thickness distribution from satellite remote sensing. It was found that overall snow cover works to enhance the surface roughness of sea ice rather than moderate it, and increases the drag coefficient by about 10%. As for thickness retrieval, mean ice thickness had a higher correlation with ice surface roughness than mean freeboard or surface elevation, which indicates the potential usefulness of satellite L-band SAR in estimating the ice thickness distribution in the seasonal sea-ice zone.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparative study was carried out on soils of the maritime (Arctowski, King George Island) and the continental (Casey, Wilkes Land) Antarctic. Soil sampIes are described for surface layers (0-10 cm) by their in situ temperature profiles as well as by field and laboratory analyses of grain sizes, pH and nutrient contents. Active cryoturbation is a main factor of mixing processes in surfaces with high silt and clay content. In both regions processes of podzolisation were recognized. Microclimatic conditions show the importance of small scale processes which are of special importance for freeze-thaw cycles. The distribution of nutrients and other inorganic components is rather homogeneous in regosols and leptosols. But in soils with organic top layers by lichen and moss cushions (crusts) accumulation occurs as well as displacement of metal ions into deeper layers (>10 cm). Histosols show patterns of brown soils. Special attention is given to the origin of nitrogen compounts and the different ways of import of other components (e.g. chloride) into the Antarctic system are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediments from Ocean Drilling Program Site 1165 in the Indian Ocean sector of the Southern Ocean (off Prydz Bay) contain a series of layers that are rich in ice-rafted debris (IRD). Here we present evidence that IRD-rich layers at Site 1165 at 7, 4.8, and 3.5 Ma record short-lived, massive discharges of icebergs from Wilkes Land and Adélie Land, more than 1500 kilometers to the east of the depositional site. This distant source of icebergs is clearly defined by the presence of IRD hornblende grains with 40Ar/39Ar ages of 1200-1100 Ma and 1550-1500 Ma, ages that are not found on the East Antarctic continent in locations closer to Site 1165. This observation requires enormous amounts of detritus-carrying drifting icebergs, most likely in the form of large icebergs. These events probably reflect destabilization, surge, and break-up of ice streams on the Wilkes Land and Adélie Land margins of the East Antarctic Ice Sheet, in the vicinity of the low-lying Aurora and Wilkes Basins. They occurred under warming conditions, but each coast seems to have produced ice-rafting events independently, at different times. The data presented here constitute the first evidence of far-traveled icebergs from specific source areas around the East Antarctic perimeter. Launch of these icebergs may have happened during quite dramatic events, perhaps analogous to "Heinrich Events" in the North Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.