535 resultados para Wildland Fires


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los regímenes de fuegos forestales están cambiando en Gran Canaria y los grandes incendios forestales son más probables que antiguamente. Esto es un cambio importante en el régimen de perturbaciones y una grave amenaza a la biodiversidad. El Plan de Prevención de Incendios Forestales de Gran Canaria, año 2002 dejó clara la obligación de cambiar las estructuras de vegetación de la Isla en dos ámbitos: paisaje y protección de zonas sensibles. El uso de fuego prescrito (años 2002-2005) ha resultado ser una herramienta especialmente eficiente en este ámbito y muy adecuada para compatibilizar las acciones de prevención de incendios con el mantenimiento de los procesos ecológicos. Estas primeras experiencias en Gran Canaria muestran la idoneidad de los tratamientos para establecer rodales resistentes al paso del fuego en zonas estratégicas (deducidas tras simulación con Farsite y FlamMap). Y revelan lo conveniente que es que estos rodales resistentes estén distribuidos por nuestros montes de modo que los incendios potencialmente grandes encuentren zonas en las que sea factible controlar los perímetros. Este control se pudo hacer eficientemente en el incendio de las Mesas de 17 de agosto de 2004.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les changements climatiques prennent une importance grandissante dans l’étude des phénomènes spatiaux à grande échelle. Plusieurs experts affirment que les changements climatiques seront un des principaux moteurs de changement écologique dans les prochaines décennies et que leurs conséquences seront inévitables. Ces changements se manifesteront sur le milieu physique par la fonte des calottes glaciaires, le dégel du pergélisol, l’instabilité des versants montagneux en zone de pergélisol, l’augmentation de l’intensité, de la sévérité et de la fréquence des événements climatiques extrêmes tels les feux de forêt. Les changements climatiques se manifesteront aussi sur le milieu biologique, tel la modification de la durée de la saison végétative, l’augmentation des espèces exotiques invasives et les changements dans la distribution en espèces vivantes. Deux aspects sont couverts par cette étude : 1) les changements dans la répartition spatiale de 39 espèces d’oiseaux et 2) les modifications dans les patrons spatiaux des feux, en forêt boréale québécoise, tous deux dans l’horizon climatique de 2100. Une approche de modélisation statistique démontre que la répartition spatiale des oiseaux de la forêt boréale est fortement liée à des variables bioclimatiques (R2adj = 0.53). Ces résultats permettent d’effectuer des modélisations bioclimatiques pour le gros-bec errant et la mésange à tête noire quivoient une augmentation de la limite nordique de distribution de l’espèce suivant l’intensité du réchauffement climatique. Finalement, une modélisation spatialement explicite par automate cellulaire permet de démontrer comment les changements climatiques induiront une augmentation dans la fréquence de feux de forêt et dans la superficie brûlée en forêt boréale du Québec.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

FEMA's mission is to support our citizens and first responders to ensure that as a Nation we work together to build, sustain, and improve our capability to prepare for, protect against, respond to, recover from, and mitigate all hazards.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research first evaluated the effects of urban wildland interface on reproductive biology of the Big Pine Partridge Pea, Chamaecrista keyensis, an understory herb that is endemic to Big Pine Key, Florida. I found that C. keyensis was self-compatible, but depended on bees for seed set. Furthermore, individuals of C. keyensis in urban habitats suffered higher seed predation and therefore set fewer seeds than forest interior plants. ^ I then focused on the effects of fire at different times of the year, summer (wet) and winter (dry), on the population dynamics and population viability of C. keyensis. I found that C. keyensis population recovered faster after winter burns and early summer burns (May–June) than after late summer burns (July–September) due to better survival and seedling recruitment following former fires. Fire intensity had positive effects on reproduction of C. keyensis. In contrast, no significant fire intensity effects were found on survival, growth, and seedling recruitment. This indicated that better survival and seedling recruitment following winter and early summer burns (compared with late summer burns) were due to the reproductive phenology of the plant in relation to fires rather than differences in fire intensity. Deterministic population modeling showed that time since fire significantly affected the finite population growth rates (λ). Particularly, recently burned plots had the largest λ. In addition, effects of timing of fires on λ were most pronounced the year of burn, but not the subsequent years. The elasticity analyses suggested that maximizing survival is an effective way to minimize the reduction in finite population growth rate the year of burn. Early summer fires or dry-season fires may achieve this objective. Finally, stochastic simulations indicated that the C. keyensis population had lower extinction risk and population decline probability if burned in the winter than in the late summer. A fire frequency of approximately 7 years would create the lowest extinction probability for C. keyensis. A fire management regime including a wide range of burning seasons may be essential for the continued existence of C. keyensis and other endemic species of pine rockland on Big Pine Key. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest fires are defined as uncontrolled fires often occurring in wildland areas, but that can also affect houses or agricultural resources. Causes are both natural (e.g.,lightning phenomena) and anthropogenic (human negligence or arsons).Major environmental factors influencing the fire ignition and propagation are climate and vegetation. Wildfires are most common and severe during drought period and on windy days. Moreover, under water-stress conditions, which occur after a long hot and dry period, the vegetation is more vulnerable to fire. These conditions are common in the United State and Canada, where forest fires represent a big problem. We focused our analysis on the state of Florida, for which a big dataset on forest fires detection is readily available. USDA Forest Service Remote Sensing Application Center, in collaboration with NASA-Goddard Space Flight Center and the University of Maryland, has compiled daily MODIS Thermal Anomalies (fires and biomass burning images) produced by NASA using a contextual algorithm that exploits the strong emission of mid-infrared radiation from fires. Fire classes were converted in GIS format: daily MODIS fire detections are provided as the centroids of the 1 kilometer pixels and compiled into daily Arc/INFO point coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon monoxide is the chief killer in fires. Dangerous levels of CO can occur when reacting combustion gases are quenched by heat transfer, or by mixing of the fire plume in a cooled under- or overventilated upper layer. In this paper, carbon monoxide predictions for enclosure fires are modeled by the conditional moment closure (CMC) method and are compared with laboratory data. The modeled fire situation is a buoyant, turbulent, diffusion flame burning under a hood. The fire plume entrains fresh air, and the postflame gases are cooled considerably under the hood by conduction and radiation, emulating conditions which occur in enclosure fires and lead to the freezing of CO burnout. Predictions of CO in the cooled layer are presented in the context of a complete computational fluid dynamics solution of velocity, temperature, and major species concentrations. A range of underhood equivalence ratios, from rich to lean, are investigated. The CMC method predicts CO in very good agreement with data. In particular, CMC is able to correctly predict CO concentrations in lean cooled gases, showing its capability in conditions where reaction rates change considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon monoxide, the chief killer in fires, and other species are modelled for a series of enclosure fires. The conditions emulate building fires where CO is formed in the rich, turbulent, nonpremixed flame and is transported frozen to lean mixtures by the ceiling jet which is cooled by radiation and dilution. Conditional moment closure modelling is used and computational domain minimisation criteria are developed which reduce the computational cost of this method. The predictions give good agreement for CO and other species in the lean, quenched-gas stream, holding promise that this method may provide a practical means of modelling real, three-dimensional fire situations. (c) 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every year European citizens become victims of devastating fires, which are especially disastrous for Southern European countries. Apart from the numerous health and economic consequences, fires generate hazardous pollutants that are introduced into the environment, thus representing serious risks for public health. In that regard, particulate matter (PM) is of amajor concern. Thus, the objectives of thisworkwere to characterize the trend of forest fire occurrences and burnt area during the period of 2005 and 2010 and to study the influence of forest fires on levels of particulatematter PM10 and PM2.5. In 2010, 22,026 forest fires occurred in Portugal. The northern region was the most affected by forest fires, with 27% of occurrences in Oporto district. The annual means of PM10 and PM2.5 concentrations at two urban background sites were 25±14 μg m−3 and 8.2±4.9 μg m−3, and 17±13 μg m−3 and 7.3±5.9 μg m−3, respectively. At both sites the highest levels of PMfractionswere observed during July and August of 2010, corresponding to the periods when majority (66%) of forest fires occurred. Furthermore, PM10 daily limit at the two sites was exceeded during 20 and 5 days, respectively; 56%, and respectively 60% of those exceedances occurred during the forest fire season. Considering that the risks of forest fire ignition and severity are enhanced with elevated temperatures, the climate change might increase the environmental impacts of forest fires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portugal, as well as the Mediterranean basin, is favorable to the occurrence of forest fires. In this work a statistical analysis was carried out based on the official information, considering the forest fires occurrences and the corresponding burned area for each of the districts of the mainland Portugal, between 1996 and 2010. Concerning to the forest fires occurrence it was possible to identify three main regions in mainland Portugal, while the burned area can be characterized in two main regions. Associations between districts and years are different in the two approaches. The results obtained provide a synthetic analysis of the phenomenon of forest fires in continental Portugal, based on all the official information available to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and implementation of measures which promote the reduction of the impacts of forest fires on soils is imperative and should be part of any strategy for forest and soil preservation and recovery, especially considering the actual scenario of continuous growth in the number of fires and burnt area. Consequently, with the dendrocaustologic reality that has characterized the Portuguese mainland in recent decades, a research project promoted by the Center for the Study of Geography and Spatial Planning (CEGOT) was implemented with the objective of applying several erosion mitigation measures in a burned area of the Peneda-Geres National Park in NW Portugal. This paper therefore seeks to present the measures applied in the study area within the project Soil Protec, relating to triggered channel processes and the results of preliminary observations concerning the evaluation of the effectiveness of erosion mitigation measures implemented, as well as their cost/benefit ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.