997 resultados para Wigner Ville Distribution
The Optimal Smoothing of the Wigner-Ville Distribution for Real-Life Signals Time-Frequency Analysis
Resumo:
The problem of detecting an unknown transient signal in noise is considered. The SNR of the observed data is first enhanced using wavelet domain filter The output of the wavelet domain filter is then transformed using a Wigner-Ville transform,which separates the spectrum of the observed signal into narrow frequency bands. Each subband signal at the output of the Wigner-ville block is subjected kto wavelet based level dependent denoising (WBLDD)to supress colored noise A weighted sum of the absolute value of outputs of WBLDD is passed through an energy detector, whose output is used as test statistic to take the final decision. By assigning weights proportional to the energy of the corresponding subband signals, the proposed detector approximates a frequency domain matched filter Simulation results are presented to show that the performance of the proposed detector is better than that of the wavelet packet transform based detector.
Resumo:
Con base en la Distribución de Wigner-Ville(WVO) se realizó un análisis en tiempo y frecuencia de datos obtenidos con el Radar de Penetración Terrestre (GPR), basado en el estudio de la descomposición de la señal espectral. Se calcula una correlación entre la señal original y las componentes de tiempo-frecuencia para obtener anomalías estructurales de la información contenida en el radargrama relacionándola con la geología disponible. En primer lugar se describe la aplicación de un ejemplo teórico constituido por lo que representaría un túnel (tubería). Se obtuvieron las firmas correspondientes en el dominio del tiempo y en el dominio de la frecuencia. Finalmente se analiza esta metodología en un sido de prueba en la detección de un tambo enterrado donde son conocidas la geometría y su profundidad. Este especial sitio fue facilitado por la Universidad Nacional Autónoma de México, en los terrenos del Observatorio Magnético de Teoloyucan, Estado de México. Los resultados obtenidos son bastante alentadores, ya que la WVD es capaz de definir los rasgos morfofógicos relacionados con el tambo y abre la posibilidad de localizar este tipo de estructuras.
Resumo:
This paper investigates the use of time-frequency techniques to assist in the estimation of power system modes which are resolvable by a Digital Fourier Transform (DFT). The limitations of linear estimation techniques in the presence of large disturbances which excite system non-linearities, particularly the swing equation non-linearity are shown. Where a nonlinearity manifests itself as time varying modal frequencies the Wigner-Ville Distribution (WVD) is used to describe the variation in modal frequencies and construct a window over which standard linear estimation techniques can be used. The error obtained even in the presence of multiple resolvable modes is better than 2%.
Resumo:
We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).
Resumo:
In modem signal Processing,non-linear,non-Gaussian and non-stable signals are usually the analyzed and Processed objects,especially non-stable signals. The convention always to analyze and Process non-stable signals are: short time Fourier transform,Wigner-Ville distribution,wavelet Transform and so on. But the above three algorithms are all based on Fourier Transform,so they all have the shortcoming of Fourier Analysis and cannot get rid of the localization of it. Hilbert-Huang Transform is a new non-stable signal processing technology,proposed by N. E. Huang in 1998. It is composed of Empirical Mode Decomposition (referred to as EMD) and Hilbert Spectral Analysis (referred to as HSA). After EMD Processing,any non-stable signal will be decomposed to a series of data sequences with different scales. Each sequence is called an Intrinsic Mode Function (referred to as IMF). And then the energy distribution plots of the original non-stable signal can be found by summing all the Hilbert spectrums of each IMF. In essence,this algorithm makes the non-stable signals become stable and decomposes the fluctuations and tendencies of different scales by degrees and at last describes the frequency components with instantaneous frequency and energy instead of the total frequency and energy in Fourier Spectral Analysis. In this case,the shortcoming of using many fake harmonic waves to describe non-linear and non-stable signals in Fourier Transform can be avoided. This Paper researches in the following parts: Firstly,This paper introduce the history and development of HHT,subsequently the characters and main issues of HHT. This paper briefly introduced the basic realization principles and algorithms of Hilbert-Huang transformation and confirms its validity by simulations. Secondly, This paper discuss on some shortcoming of HHT. By using FFT interpolation, we solve the problem of IMF instability and instantaneous frequency undulate which are caused by the insufficiency of sampling rate. As to the bound effect caused by the limitation of envelop algorithm of HHT, we use the wave characteristic matching method, and have good result. Thirdly, This paper do some deeply research on the application of HHT in electromagnetism signals processing. Based on the analysis of actual data examples, we discussed its application in electromagnetism signals processing and noise suppression. Using empirical mode decomposition method and multi-scale filter characteristics can effectively analyze the noise distribution of electromagnetism signal and suppress interference processing and information interpretability. It has been founded that selecting electromagnetism signal sessions using Hilbert time-frequency energy spectrum is helpful to improve signal quality and enhance the quality of data.
Resumo:
Blind deconvolution is studied in the underwater acoustic channel context, by time-frequency (TF) processing. The acoustic propagation environment is modelled by ray tracing and mathematically described by a multipath propagation channel. Representation of the received signal by means of a signal-dependent TF distribution (radially Gaussian kernel distribution) allowed to visualize the resolved replicas of the emitted signal, while signi cantly attenuating the inherent interferences of classic quadratic TF distributions. The source signal instantaneous frequency estimation was the starting point for both source and channel estimation. Source signature estimation was performed by either TF inversion, based on the Wigner-Ville distribution of the received signal, or a subspace- -based method. The channel estimate was obtained either via a TF formulation of the conventional matched- lter, or via matched- - ltering with the previously obtained source estimate. A shallow water realistic scenario is considered, comprising a 135-m depth water column and an acoustic source located at 90-m depth and 5.6-km range from the receiver. For the corresponding noiseless simulated data, the quality of the best estimates was 0.856 for the source signal, and 0.9664 and 0.9996 for the amplitudes and time-delays of the impulse response, respectively. Application of the proposed deconvolution method to real data of the INTIMATE '96 sea trial conduced to source and channel estimates with the quality of 0.530 and 0.843, respectively. TF processing has proved to remove the typical ill-conditioning of single sensor deterministic deconvolution techniques.
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.
Resumo:
Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.
Resumo:
Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.
Resumo:
This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
El objetivo de este trabajo fin de grado (TFG) consiste en estudiar algunas técnicas de análisis tiempo-frecuencia y aplicarlas a la detección de señales radar. Estas técnicas se incorporan en los actuales equipos de guerra electrónica radar, tales como los interceptadores digitales. La principal motivación de estos equipos consiste en detectar y localizar las fuentes radiantes enemigas e intentar obtener cierta información de las señales interceptadas, tal como, la dirección de llegada (DOA, Direction Of Arrival), el tiempo de llegada (TOA, Time Of Arrival), amplitud de pulso (PA, Pulse Amplitude), anchura de pulso (PW, Pulse Width), frecuencia instantánea (IF, Instantaneous Frequency) o modulación intrapulso. Se comenzará con un estudio detallado de la Short-Time Fourier Transform (STFT),dado su carácter lineal es la técnica más explotada actualmente. Este algoritmo presenta una mala resolución conjunta tiempo-frecuencia. Este hecho provoca el estudio complementario de una segunda técnica de análisis basada en la distribución de Wigner-Ville (WVD). Mediante este método se logra una resolución optima tiempo-frecuencia. A cambio, se obtienen términos cruzados indeseados debido a su carácter cuadrático. Uno de los objetivos de este TFG reside en calcular la sensibilidad de los sistemas de detección analizados a partir de las técnicas tiempo-frecuencia. Se hará uso del método de Monte Carlo para estimar ciertos parámetros estadísticos del sistema tales como la probabilidad de falsa alarma y de detección. Así mismo, se llevará a cabo el estudio completo de un receptor digital de guerra electrónica a fin de comprender el funcionamiento de todos los subsistemas que componen el conjunto (STFT/WVD, medidor instantáneo de frecuencias, procesamiento no coherente y generación de descriptores de pulso). Por último, se analizará su comportamiento frente a diferentes señales Radar (FM-lineal, BPSK, chirp o Barker). Se utilizará para ello la herramienta Matlab.
Resumo:
The method of Wigner distribution functions, and the Weyl correspondence between quantum and classical variables, are extended from the usual kind of canonically conjugate position and momentum operators to the case of an angle and angular momentum operator pair. The sense in which one has a description of quantum mechanics using classical phase‐space language is much clarified by this extension.