967 resultados para White ceramic material
Resumo:
Oxide ceramics with high sintering-resistance above 1473 K have very important applications in thermal barrier coatings (TBCs), catalytic combustion and high-temperature structural materials. Lanthanum zirconate (La2Zr2O7, LZ) is an attractive TBC material which has higher sintering-resistance than yttria stabilized zirconia (YSZ), and this property could be further improved by the proper addition of ceria.
Resumo:
In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.
Resumo:
This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.
Resumo:
Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO 2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol. © 2011 Ceramic Society of Japan.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.
Resumo:
STATEMENT OF PROBLEM: Long-term fluoride application on the teeth of patients receiving radiation therapy for head and neck tumors results in excessive staining and roughening of ceramic restorations. PURPOSE: The purpose of this in vitro study was to compare the staining effects of 2 fluoride treatments on ceramic disks by simulating 1 year of clinical exposure at 10 minutes per day. In addition, 2 different surface preparations were tested. MATERIAL AND METHODS: Eighty ceramic disks (IPS Empress), 20 x 2 mm, were fabricated. Half of the disks were glazed, and the remaining disks were polished. All disks were brushed for 3 minutes with a soft-bristle power toothbrush and mild dentifrice (baseline) and were immersed in 1 of the 2 fluoride products (0.4% SnF(2), Gel-Kam Gel, or 1.1% NaF, Prevident 5000) for 10 days (n=20). Means and standard deviations of color change (Delta E), surface roughness (Ra, um), and surface gloss (GU) of the ceramic material were measured with a reflection spectrophotometer, a profilometer, and a gloss meter, respectively, at baseline and after fluoride treatment. Two- and 3-way ANOVA (alpha=.05), with surface preparation (polished vs. glazed) and fluoride treatment (0.4% SnF(2) or 1.1% NaF) as independent variables and condition (baseline vs. after fluoride treatment) as a repeated measure, was used to analyze the data. Fisher's PLSD intervals (alpha=.05) were calculated for comparisons among the means. RESULTS: The polished specimens had significantly higher Delta E values, significantly higher surface gloss values, and significantly lower surface roughness values than the glazed specimens before fluoride treatment (P<.001). After both fluoride treatments, ceramic disks exhibited significantly higher surface roughness values when polished and significantly lower surface gloss values when glazed or polished (P<.001). The glazed specimens presented significantly higher surface roughness (P<.001) and lower surface gloss values (P<.001) when treated with 0.4% SnF(2) as compared to NaF. For the polished specimens, there was no significant difference in surface roughness and surface gloss values between the 2 fluoride treatments. CONCLUSIONS: Use of 0.4% SnF(2) and 1.1% NaF gels, in vitro, caused significant color change in the polished IPS Empress ceramic disks. Polishing of the ceramic surface before immersion in either fluoride agent caused the ceramic tested to be more resistant to etching by the 2 solutions tested. The NaF caused less deterioration of the porcelain surface and was less stain inducing than SnF(2).
Resumo:
Tit. en la etiqueta: "V. Masip Urios Carcagente España / Blue / White / Red"
Resumo:
This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.
Resumo:
This work presents research into the addition of chamotte obtained from the ceramic isolator of unusable spark plugs in formulations of material mixes for standard white ceramic material with aluminum oxide bases. After the physical chemical characterization of the primary materials, standard clay and the chamotte, three mixtures were prepared with concentrations of 10, 20 and 30% chamotte by weight in relation to the standard clay. The test samples underwent heating at a rate of 30 0C/min to levels that included 100o , 200o , 300o, 400o, 500o e 600 0C and also we submitted to three distinct burn temperatures: 1450o, 1500o e 1550 0C, remaining at these temperatures for 2 hour periods. After sintering, the physical and microstructural properties of the different test samples were measured and analyzed. The results show that the materials obtained present good technical properties and that the chamotte can be reutilized as an additive in the production of white ceramic material with an aluminum oxide base
Resumo:
The world market of Kaolin has been growing as new investments for better quality of materials have been applied. This market produces amounts of dross that are put in the environment in a wrong way, causing damages to it. Trying to reduce these damages, researches have been done in an attempt to use kaolin dross in ceramic. The disposal of kaolin dross in the environment by the industries of the states of Rio Grande do Norte and Paraiba have great impact in society. Usually this dross is disposed clandestinely in places like roads, river banks and lands of small cities. The present work shows the characteristics of the kaolin produced by the mining company in Junco do Seridó, Paraiba state, western Seridó, 300 km from Natal, in the border of both states. After that, researches were done to study its physical and the chemistry characteristics, trying to see if it can be used in white ceramic. The samples got were bolted in fabric of 325# . The technological characteristics tried to use it as a product in white ceramic. For that, it was made a haracterization of the subject matter through enlargement analyses, ATG and ATD, elaborating three formulations that were burned in four different temperatures, 1175, 1200, 1250 and 1300 degrees centigrade up to 30 minutes. After the burning, the subjects were submitted to water absorbing tests, linear retreating, apparent porosity, apparent specific mass, resistance to flexibility and MEV. For one of the mixtures it was obtained demanded properties for a semi porous material
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)