989 resultados para Wheel method


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article aims to narrate and analyze possibilities on aspects of the work developed by the group that composes the Mental Health and Public Health Improvement, using the Wheel Method, created by Gastão W. Campos, in different and diverse articulations and work organization spaces in psychosocial care field, such as Mental Health Forum, work groups related to Regional Collegiate Management (CGRs), with municipal teams to organize mental health network and with newcomer residents to a therapeutic residence It is from these different experiences that it is intended to reflect, discuss and promote a dialogue on the possibilities of the Wheel Method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to reflect the organization of the mental health services in primary care from a new organizational arrangement to health work, defined as Matrix Support (Campos, 1999), which aims to build technical and educational support in the relationship between health professionals from mental health professionals in the Family Health Strategy. The methodology used in the Matrix Support the “Wheelmethod, which is mediated by a supporter who, through questions and reflections, points out possibilities for case discussions, promotes links between the health teams, discusses the concept of link between professionals and users, strengthens the co-responsability for the actions of health and tries to break the logic related with the services organized by referrals. So the wheels when they occur in health services enables the interdisciplinary, and through it, it is expected to talk about the complexity of the phenomena that surround each subject, so that they overcome the dichotomy between individual and collective, social and biological revealing new values to be incorporated into health practices. In front of this analysis that is theoric and conceptual, allied with the experience from a nursisn area professional that worked in this work method, can be concluded that this experience related here, eas strategic for the health care actions for strengthen based on the Unique Health system and Psych Rebuild principles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work shows the method developed to solve the wheel-rail contact problem via a look-up table with a three-dimensional elastic model. This method enables introduction of the two contact point effect on vehicle movement using three-dimensional analysis of surfaces including the influence of the angle of attack. This work presents several dynamic simulations and studies the impact that the introduction of the two contact points on three dimensions has on wear indexes and derailment risk against traditional bidimensional analysis. Furthermore, it studies advantages and disadvantages of using a look-up table against an on-line resolution of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an ongoing research on the development of a longer life insulated rail joint (IRJ), this paper reports a field experiment and a simplified 2D numerical modelling for the purpose of investigating the behaviour of rail web in the vicinity of endpost in an insulated rail joint (IRJ) due to wheel passages. A simplified 2D plane stress finite element model is used to simulate the wheel-rail rolling contact impact at IRJ. This model is validated using data from a strain gauged IRJ that was installed in a heavy haul network; data in terms of the vertical and shear strains at specific positions of the IRJ during train passing were captured and compared with the results of the FE model. The comparison indicates a satisfactory agreement between the FE model and the field testing. Furthermore, it demonstrates that the experimental and numerical analyses reported in this paper provide a valuable datum for developing further insight into the behaviour of IRJ under wheel impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation material

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheel-rail rolling contact at railhead edge, such as a gap in an insulated rail joint, is a complex problem; there are only limited analytical, numerical and experimental studies available on this problem in the academic literature. This paper describes experimental and numerical investigations of railhead strains in the vicinity of the edge under the contact of a loaded wheel. A full-scale test rig was developed to cyclically apply wheel/rail rolling contact load to the edge zone of the railhead. An image analysis technique was employed to determine the railhead vertical, lateral and shear strain components. The vertical strains determined using the image analysis method have been validated with the strain gauge measurements and used for the calibration of a 3D nonlinear Finite Element Model (FEM) that simulates the wheel/rail contact at the railhead edge and use suitable boundary conditions commensurate to the experimental setup. The FEM was then used to determine other states of strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy haul railway lines are important and expensive items of infrastructure operating in an environment which is increasingly focussed on risk-based management and constrained profit margins. It is vital that costs are minimised but also that infrastructure satisfies failure criteria and standards of reliability which account for the random nature of wheel-rail forces and of the properties of the materials in the track. In Australia and the USA, concrete railway sleepers/ties are still designed using methods which the rest of the civil engineering world discarded decades ago in favour of the more rational, more economical and probabilistically based, limit states design (LSD) concept. This paper describes a LSD method for concrete sleepers which is based on (a) billions of measurements over many years of the real, random wheel-rail forces on heavy haul lines, and (b) the true capacity of sleepers. The essential principles on which the new method is based are similar to current, widely used LSD-based standards for concrete structures. The paper proposes and describes four limit states which a sleeper must satisfy, namely: strength; operations; serviceability; and fatigue. The method has been applied commercially to two new major heavy haul lines in Australia, where it has saved clients millions of dollars in capital expenditure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model designed to study vertical interactions between wheel and rail when the wheel moves over a rail welding. The model focuses on the spatial domain, and is drawn up in a simple fashion from track receptances. The paper obtains the receptances from a full track model in the frequency domain already developed by the authors, which includes deformation of the rail section and propagation of bending, elongation and torsional waves along an infinite track. Transformation between domains was secured by applying a modified rational fraction polynomials method. This obtains a track model with very few degrees of freedom, and thus with minimum time consumption for integration, with a good match to the original model over a sufficiently broad range of frequencies. Wheel-rail interaction is modelled on a non-linear Hertzian spring, and consideration is given to parametric excitation caused by the wheel moving over a sleeper, since this is a moving wheel model and not a moving irregularity model. The model is used to study the dynamic loads and displacements emerging at the wheel-rail contact passing over a welding defect at different speeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the currently strict environmental law in present days, researchers and industries are seeking to reduce the amount of cutting fluid used in machining. Minimum quantity lubrication is a potential alternative to reduce environmental impacts and overall process costs. This technique can substantially reduce cutting fluids in grinding, as well as provide better performance in relation to conventional cutting fluid application (abundant fluid flow). The present work aims to test the viability of minimum quantity lubrication (with and without water) in grinding of advanced ceramics, when compared to conventional method (abundant fluid flow). Measured output variables were grinding power, surface roughness, roundness errors and wheel wear, as well as scanning electron micrographs. The results show that minimum quantity lubrication with water (1:1) was superior to conventional lubrication-cooling in terms of surface quality, also reducing wheel wear, when compared to the other methods tested.