985 resultados para Wheat products Nutrition
Resumo:
On 2 July 2009, the EFSA Panel on Dietetic products, Nutrition and Allergies (NDA) endorsed a draft Opinion on Dietary Reference Values for fats to be released for public consultation. This Scientific Report summarises the comments received through the public consultation and outlines how these were taken into account in the final opinion. EFSA had received contributions from 40 interested parties (individuals, non-governmental organisations, industry organisations, academia and national assessment bodies). The main comments which were received during the public consultation related to: the availability of more recent data, the nomenclature used, the use of a non-European food composition data base, the impact of genetic factors in modulating the absorption, metabolism and health effects of different fatty acids, the definition of “nutritionally adequate diet”, the use of Dietary Reference Values in the labelling of foods, the translation of advice into food-based dietary guidelines, nutrient goals and recommendations, certain risk management issues, and to Dietary Reference Values of fats, individual fatty acids, and cholesterol. All the public comments received that related to the remit of EFSA were assessed and the Opinion on Dietary Reference Values for fats has been revised taking relevant comments into consideration.
Resumo:
Dry matter, energy, crude protein and amino acid apparent digestibility coefficients (ADCs) were determined in white shrimp juveniles for six wheat products: hard red winter whole grain meal (HWG), Rayon whole grain meal (RWG), Durum whole grain meal (DWG), hard red winter clear flour (HCF), mixed wheat 2nd clear flour (MCF) and semolina (S). The test diets included 30% of the test ingredients and 70% of a ground commercial diet supplemented with 1% chromic oxide and 1% sodium alginate. Amino acid contents in the ingredients, diets and feces were analyzed, and digestibility was determined by difference in order to minimize the impact of endogenous amino acid losses; crude protein and amino acids ADCswere adjusted for dietary preprandial losses in seawater. In general, nutrients digestibility was far higher in the wheat products than in the fish meal-based reference diet. Drymatter and crude proteinADCswere not statistically different amongwheat products (from84 to 96% and from88 to 107% respectively). Energy ADCs were significantly higher for clear flours (96% for HCF and MCF) than forwhole grainmeals and S (from83 to 86%). Total amino acids (TAA) and essentialamino acids (EAA) ADCs, once adjusted for preprandial leaching fromthe experimental diets, ranged from81 to 89% and from 58 to 81% respectively, and were statistically comparable among wheat products. Low Thr ADCs appear as a common feature of the amino acids digestibility profiles for whole grain meals, clear flours, or semolina.
Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-beta-D-glucan in endosperm of wheat
Resumo:
(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.
Resumo:
Nutrition in bean plants and anthracnose intensity in function of silicon and copper application. The objective of this work was to evaluate the effect of calcium silicate and copper sulfate on anthracnose intensity and nutrition of bean plants. The experiment was conducted using an experimental design in randomized blocks following a 4 x 4 factorial arrangement , (four levels of calcium silicate and four levels of copper sulfate) and two additional treatments (plants without inoculation and plants sprinkled with Benomyl). Four evaluations of the incidence and severity of anthracnose were done, in addition to measuring, total leaf area. At the end of the evaluations, incidence: and data were integrated over time, obtaining the area under disease progress curve (AUDPC). Contents of N, P, K, Ca, Mg, B, Cu, Fe, Mn, Zn, Si and lignin were determined in the aerial Part. A linear decrease of the intensity AUDPC was observed with the increase of the doses of calcium silicate. The severity AUDPC was influenced by the doses of copper, obtaining a reduction of 35% on the higher dosage. The supply of silicon and copper altered the content of the K, mg, S, Zn, Ca and Si in the aerial part of the bean plants.
Resumo:
Acrylamide forms from free asparagine and reducing sugars during cooking, with asparagine concentration being the key parameter determining the formation in foods produced from wheat flour. In this study free amino acid concentrations were measured in the grain of varieties Spark and Rialto and four doubled haploid lines from a Spark x Rialto mapping population. The parental and doubled haploid lines had differing levels of total free amino acids and free asparagine in the grain, with one line consistently being lower than either parent for both of these factors. Sulfur deprivation led to huge increases in the concentrations of free asparagine and glutamine, and canonical variate analysis showed clear separation of the grain samples as a result of treatment (environment, E) and genotype (G) and provided evidence of G x E interactions. Low grain sulfur and high free asparagine concentration were closely associated with increased risk of acrylamide formation. G, E, and G x E effects were also evident in grain from six varieties of wheat grown at field locations around the United Kingdom in 2006 and 2007. The data indicate that progress in reducing the risk of acrylamide formation in processed wheat products could be made immediately through the selection and cultivation of low grain asparagme varieties and that further genetically driven improvements should be achievable. However, genotypes that are selected should also be tested under a range of environmental conditions.
Resumo:
Mode of access: Internet.
Resumo:
Domestication of plants and plant breeding have dramatically eroded the allelic variations of crop species which led to an increasing susceptibility of crop plants to environmental stresses, diseases and pests. Drought is a major environmental stress factor that affects the growth and development of plants so the selection of tolerant genotypes becomes increasingly important with respect to the predicted effects of global warming. In this study, several genotypes of Spelt (Triticum aestivum var. spelta) were tested under low water supply in soil with the aim of to find Spelt genotypes more resistant than wheat to these conditions, and select them so that in future may be used to improve wheat crops. Morphological analyses were performed and mineral and enzymatic analyses and also dry matter production were calculated. Our results suggests that the genotypes Sp53, Sp96, Sp912, Sp757 and Sp804 are a potential ones to use in breeding programs to improve wheat production. Under drought, these genotypes had growth efficiency of 38%, 45%, 64%, 37%, and 31% respectively and also showed higher biomass than modern wheat and were also mineralogical richer. The genotypes Sp96 and Sp912 showed highest activity of all antioxidants enzymes tested. This work proves that Spelt is a good wheat to continue to study in order to improve wheat crops in dry areas and consequently increase the quality of life and health of the populations living in those areas.
Resumo:
Introduction. Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. Cereals can be colonized by a large number of fungal species throughout the plants' growth, but also during grain storage. Some of these fungi deliver toxins that can have a serious impact on human health when they are ingested via wheat products. Although International and European legislation on contaminants in food, including mycotoxins, include measures to ensure protection of public health by setting down the maximum levels for certain contaminants, the risks associated with the inhalation of such molecules during grain handling remains poorly documented. Goal of study. This project's objective was to characterize worker exposure to pathogenic, irritative or allergenic microorganisms and to identify the abiotic or biotic factors that reduce the growth of these microorganisms in crops. Indeed, the proliferation of microorganisms on wheat is dependent on temperature, rainfall and human disturbance (e.g. usage of tillage, addition of fungicides). A change in the concentration of these microorganisms in the substrate will directly result in a change in the concentration of aerosolized particles of the same microorganisms. Therefore, the exposure of worker to bioaérosols will also change. The Vaud region of Switzerland is a perfect region for conduct such a project as weather conditions vary and agricultural land management programs are divers at a small geographic scale. Methods. Bioaerosols and wheat dust have been sampled during wheat harvesting of summer 2010 at 100 sites uniformly distributed in the Vaud region that are representative of the different agriculture practices. Personal exposure has been evaluated for different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Aerosols have been sampled at a rate of 2L/min between 15 min to 4 hours (t) on a 5m PVC filter for estimating the total dust inhaled, on gelatine filter for the identification and quantification of molds, and on a 0.45um polycarbonate filter for endotoxin quantification. Altitude, temperature and annual average rainfall were considered for each site. The physical and chemical characteristics of soils were determined using the methods in effect at Sol Council (Nyon). Total dust has been quantified following NIOSH 0500 method. Reactive endotoxine activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol or wheat dust genomic DNA. Results & Conclusions. Our results confirm the previous quantitative data on the worker exposure to wheat dust. In addition, they show that crop workers are systematically exposed to complex mixtures of allergens, irritants or cytotoxic components. The novelty of our study is the systematic detection of molds such as Fusarium - that is a mycotoxins producer - in the bioaerosols. The results are interpreted by taking in account the agriculture practice, the Phosphorus : Carbon : Nitrogen ratio of the soil, the altitude and the average of rainy days per year.
Resumo:
A variety of foods have been implicated in symptoms of patients with Irritable Bowel Syndrome (IBS) but wheat products are most frequently cited by patients as a trigger. Our aim was to investigate the effects of breads, which were fermented for different lengths of time, on the colonic microbiota using in vitro batch culture experiments. A set of in vitro anaerobic culture systems were run over a period of 24 h using faeces from 3 different IBS donors (Rome Criteria–mainly constipated) and 3 healthy donors. Changes in gut microbiota during a time course were identified by fluorescence in situ hybridisation (FISH), whilst the small -molecular weight metabolomic profile was determined by NMR analysis. Gas production was separately investigated in non pH-controlled, 36 h batch culture experiments. Numbers of bifidobacteria were higher in healthy subjects compared to IBS donors. In addition, the healthy donors showed a significant increase in bifidobacteria (P<0.005) after 8 h of fermentation of a bread produced using a sourdough process (type C) compared to breads produced with commercial yeasted dough (type B) and no time fermentation (Chorleywood Breadmaking process) (type A). A significant decrease of δ-Proteobacteria and most Gemmatimonadetes species was observed after 24 h fermentation of type C bread in both IBS and healthy donors. In general, IBS donors showed higher rates of gas production compared to healthy donors. Rates of gas production for type A and conventional long fermentation (type B) breads were almost identical in IBS and healthy donors. Sourdough bread produced significantly lower cumulative gas after 15 h fermentation as compared to type A and B breads in IBS donors but not in the healthy controls. In conclusion, breads fermented by the traditional long fermentation and sourdough are less likely to lead to IBS symptoms compared to bread made using the Chorleywood Breadmaking Process.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
En esta Tesis Doctoral se ha estudiado la influencia del cultivar sobre el comportamiento reológico y panadero de cinco cultivares de trigo sembrados en el mismo año y en el mismo ambiente, en condiciones de cultivo ecológico. Tres de ellos eran de trigo panadero (Triticum aestivum ssp. vulgare), ‘Bonpain’, ‘Craklin’ y ‘Sensas’ y los otros dos de trigo espelta (Triticum aestivum ssp. spelta), ‘Espelta Álava’ y ‘Espelta Navarra’. Actualmente, el alohexaploide trigo panadero (2n=6x=42 genomio AABBDD) supone en torno al 90% del trigo cultivado en el mundo. En cambio, el cultivo del trigo alohexaploide espelta (2n=6x=42 genomio AABBDD) se limita a pequeñas regiones de Europa y de América del Norte. En España, el cultivo de trigo espelta se ha mantenido durante años ligado a la región de Asturias, aunque en la actualidad su cultivo está empezando a diversificarse hacia otras regiones. Esto se debe, fundamentalmente, a su potencial nutricional y a su adaptabilidad a condiciones de agricultura sostenible. El reciente resurgimiento de la espelta en productos de panificación, se debe, en gran parte, a la percepción del consumidor de que se trata de un producto ”más saludable” y “más natural” y con menor requerimiento de insumos que los trigos modernos. A medida que el consumo de alimentos a base de harina de espelta aumenta, se plantea la necesidad de evaluar su calidad harino-panadera, nutricional y sensorial en comparación con los productos elaborados con variedades de trigo común. Se caracterizaron las gluteninas de alto peso molecular (HMW) y las puroindolinas de los cinco cultivares. Se evaluó la calidad del grano, la reología de sus masas y se analizó la calidad instrumental y sensorial de sus panes. Para tal fin se ha puesto a punto un protocolo de panificación adecuado a las características particulares de los trigos espelta y se ha propuesto para el análisis sensorial de los panes un protocolo de selección, entrenamiento y validación de jueces. Teniendo en cuenta la composición en gluteninas HMW de los cultivares, se comprobó su influencia en el volumen de sedimentación y en la fuerza panadera. La composición en puroindolinas se vió reflejada en el parámetro dureza del endospermo. Los resultados indicaron que hay diferencias entre trigo panadero y trigo espelta en parámetros como, la tenacidad y el equilibrio de sus masas, la capacidad de absorción de agua de la harina y el comportamiento de la masa durante el amasado. Los trigos espeltas mostraron menor valor en el tiempo en alcanzar la presión máxima y la tolerancia al amasado, mientras que presentaron valores superiores en el decaimiento a los 250 y 450 segundos respectivamente. Respecto a la calidad de los panes elaborados, los trigos espeltas tenían mayor elasticidad en la miga y mayores valores en el área y en el diámetro de sus alveolos. Estas diferencias en la estructura y textura de la miga fueron también detectadas a nivel sensorial por el panel de jueces. Mediante el perfil sensorial descriptivo, se determinó que uno de los dos panes elaborado con trigo espelta (‘Espelta Navarra’) fue el pan más complejo considerando conjuntamente los atributos de aroma y flavor. En este trabajo no se apreciaron diferencias entre ambos tipos de trigo ni en el contenido en proteína, ni en minerales, ni en la viscosidad de su almidón. ABSTRACT In this Doctoral Thesis, the influence of various cultivars on rheological and baking behavior was studied. Five wheat cultivars were used, all planted in the same year and same organic farming environment. Three were bread wheat (Triticum aestivum ssp. vulgare), 'Bonpain', 'Craklin' and 'Sensas' and the other two were spelt wheat (Triticum aestivum ssp. spelta) , 'Espelta Álava' and 'Espelta Navarra' . Currently, the allohexaploid bread wheat (2n=6x=42 genome AABBDD) represents about 90% of global wheat production. On the other hand, allohexaploid spelt wheat (2n=6x=42 genome AABBDD) is merely produced in small areas of Europe and North America. For many years, the cultivation of spelt wheat in Spain was limited to the region of Asturias, although nowadays its production has begun to spread into other regions. This is owing to its nutritional potential and adaptability to conditions of sustainable agriculture. The recent resurgence of spelt in baking products is mainly due to consumers perception of it, as "healthier" and "more natural", and to the fewer agricultural input requirements compared to modern wheat products. As the consumption of foods made from spelt flour increases, there is a need to assess its baking, nutritional and sensory quality, compared to products made with common varieties of wheat. High molecular weight glutenins and puroindolines from the five cultivars were characterized. The quality of the grain and the rheology of the dough were evaluated and the instrumental and sensory quality of its breads were analyzed. To this end it a baking protocol was appropriately developed to the particular characteristics of spelt wheat and a selection protocol was proposed for the sensory analysis of breads, after proper training and validation of judges. Considering the HMW glutenin composition of the cultivars, the influence on the sedimentation volume and the baking strength was proven. The composition of puroindolines was reflected in the endosperm hardness parameter. The results show that there are differences between bread wheat and spelt wheat on parameters such as the tenacity and tenacity/elasticity ratio of their masses, the water absorption capacity of the flour and the behavior of the dough during kneading. The values for total time to reach maximum pressure and tolerance to mixing were lower for spelt wheat, and higher values were found for the drop at 250 s and 450 s. Regarding the quality of manufactured bread, spelt wheat had the greatest elasticity of the crumb and higher values in the area and diameter of the cells. These differences in the structure and texture of the crumb were also noticed at a sensory level by the panel of judges. It was determined by a descriptive sensory profile that one of the two loaves of bread made with spelt ('Espelta Navarra') was the most complex in the sense of its attributes of scents and flavors altogether. In this study, no differences were appreciated between the two types of wheat or the protein composition, or minerals or viscosity of the starch.
Resumo:
Due to the high supply and its attractive cost, the poultry litter has been used in the southwestern region of Parana to the improvement of soil fertility seeking greater production of grains and pastures. However, the use without technical knowledge can minimize the benefits of poultry litter or even cause undesirable effects on soil, environmental pollution and also productivity losses in the used crops. The objective of this study was to evaluate the influence of different times of poultry litter application, predating the winter crop, associated with increasing levels, about soil chemical properties, release of nutrients and crop performances in four consecutive years (2011-2014). In the first three years the experimental design was randomized blocks with a split plot system and four replications. In the main plots were tested four poultry litter application times preceding the wheat production: 0, 15, 30 and 45 days before sowing (DAS); in the subplots were applied four poultry litter levels (wet basis): 0, 4, 8 and 12 Mg ha-1. Last year one more subdivision of plots was done, evaluating the use or not of nitrogen in coverage in wheat, at a dose of 100 kg N ha-1. The wheat cultivar used in the four years was the BRS 220. In three years it was evaluated the residual effect on soybean production (cultivar - BMX Turbo RR) and in one year on the beans. The chemical soil attributes were evaluated at four depths 0-2,5cm, 2,5-5cm, 5-10cm and 10-20cm, and also the rate of decomposition and nutrient release of poultry litter and the crop productivity. The different times of application concerning the poultry litter had little influence on the studied variables, demonstrating that the producer does not need to have a specific date (before planting) to the application of poultry litter. Potassium was fully released 60 days after the allocation of litter bags into the field; for nitrogen and phosphorus the release was slower. The use of increasing levels of poultry litter increased the levels of various soil elements, highlighting the potassium which reached 20 cm deep in the second year of evaluation. The increase in pH and in the base saturation occurred only in the upper layers, while the phosphorus reached 10 cm deep in the third year of the study. It was observed increased pH and base saturation. The use of increasing doses of poultry litter contributed to the wheat plant nutrition, significantly increasing the weight of a thousand grains, and the grain yield of wheat in all the evaluated years; the nitrogen fertilization in coverage also had significant effect for the fourth evaluated year. Also there was a significant response from the residual effect of poultry litter for crops planted in summer for both soybeans and beans.
Resumo:
The Dairy Group includes milk, yogurt, cheese, and fortified soymilk. They provide calcium, vitamin D, potassium, protein, and other nutrients needed for good health throughout life. Choices should be lowfat or fat-free—to cut calories and saturated fat. How much is needed? Older children, teens, and adults need 3 cups* a day, while children 4 to 8 years old need 2½ cups, and children 2 to 3 years old need 2 cups.
Resumo:
Wheat flour from plants deficient in sulfur has been shown to contain substantially higher levels of free amino acids, particularly asparagine and glutamine, than flour from wheat grown where sulfur nutrition was sufficient. Elevated levels of asparagine resulted in acrylamide levels up to 6 times higher in sulfur-deprived wheat flour, compared with sulfur-sufficient wheat flour, for three varieties of winter wheat. The volatile compounds from flour, heated at 180 degrees C for 20 min, have been compared for these three varieties of wheat grown with and without sulfur fertilizer. Approximately 50 compounds were quantified in the headspace extracts of the heated flour; over 30 compounds were affected by sulfur fertilization, and 15 compounds were affected by variety. Unsaturated aldehydes formed from aldol condensations, Strecker. aldehydes, alkylpyrazines, and low molecular weight alkylfurans were found at higher concentrations in the sulfur-deficient flour, whereas low molecular weight pyrroles and thiophenes and sugar breakdown products were found at higher concentrations in the sulfur-sufficient flour. The reasons for these differences and the relationship between acrylamide formation and aroma volatile formation are discussed.
Resumo:
While an adequate supply of food can be achieved at present for the current global population, sustaining this into the future will be difficult in the face of a steadily increasing population, increased wealth and a diminishing availability of fertile land and water for agriculture. This problem will be compounded by the new uses of agricultural products, for example, as biofuels. Wheat alone provides ≥20% of the calories and the protein for the world's population, and the value and need to increase the production is recognized widely. Currently, the world average wheat yield is around 3 t/ha but there is considerable variation between countries, with region-specific factors limiting yield, each requiring individual solutions. Delivering increased yields in any situation is a complex challenge that is unlikely to be solved by single approaches and a multidisciplinary integrated approach to crop improvement is required. There are three specific major challenges: increasing yield potential, protecting yield potential, and increasing resource use efficiency to ensure sustainability. Since the green revolution, yields at the farm gate have stagnated in many countries, or are increasing at less than half the rate required to meet the projected demand. In some countries, large gains can still be achieved by improvements in agronomy, but in many others the yield gains will only be achieved by further genetic improvement. In this overview, the problems and potential solutions for increased wheat yields are discussed, in the context of specific geographic regions, with a particular emphasis on China. The importance and the prospects for improvement of individual traits are presented. It is concluded that there are opportunities for yield increase but a major challenge will be avoiding a simultaneous increase in resource requirements.