889 resultados para Wetland Construídos
Resumo:
The study took place in a sewage treatment plant located at the actual Department of Water and Sewer in Bauru, city of Sao Paulo state. This treatment plant has an average entrance flow of 4.8 l. s-1 made by upflow anaerobic filter, followed by wetland systems constructed in parallel. . As objective of this study we evaluate the effectiveness of three systems of constructed wetlands, with three different types of plants (Lily pond, Giant papyrus and Cattail),quantify, and qualify the effluents at various stages of treatment to monitor their effectiveness and the possibility of reuse in agriculture. There was a satisfactory removal of organic matter, with a mean concentration of 36 and 39mg.l-1 at the , phases 1 and 2 of the operation, respectively. The constructed wetlands effluent nitrogen and phosphate concentrations were high throughout all the system and the removal efficiency of ammonia nitrogen was much lower than expected, then the system is functioning as secondary treatment and not as tertiary treatment. The concentrations of micro-organisms found in the final effluent were also high. Therefore, it is concluded that the results of removal efficiency of organic matter, of constructed wetland systems, meet the parameters required by legislation for effluent discharges but do not attend the parameters required for nitrogen and micro organisms. This way, these analyzed plants effluents are suitable for reuse in agriculture restricted irrigation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A large proportion of fresh water is greatly impaired due to increasing pollution; this could be minimized through the expansion of investment in sanitation programs. But the major problem faced by third world countries and developing ones in this respect, is the high cost of projects and their implementation. In an attempt to find a simple technology, efficient and inexpensive, this study aimed to verify the effectiveness of using constructed wetland systems (CWS) for removal of bacteria and nutrients from sanitary sewer effluent from the STS Piracicamirim - Piracicaba - SP. The installation of prototypes was followed, and testing prior to regularize the flow held, but due to malfunction of these and outages of the STS activity can not evaluate the effectiveness of both as to the parameters proposed: temperature, pH, dissolved oxygen, conductivity, total dissolved solids (TDS), nitrite, nitrate, ammonia, total nitrogen, total phosphorus, chemical oxygen demand (COD), sulfide, sulfate, biochemical oxygen demand (BOD), total coliform and Escherichia coli. To establish results about the effectiveness of these types if the system were conducted literature reviews of papers published with the same theme. Analysis of these results showed fairly good efficiencies in wastewater treatment, especially for nutrients and coliforms
Resumo:
Human development and population growth during the twentieth century increased the water demand, tripling its consumption between 1950 and 1990. As the water streams were polluted; and as water is the source of minerals and also regulates vital functions, it becomes the vehicle of transmission and consequently spreads many diseases. Probably, the industries are the major responsible for this pollution when they dump untreated effluents to water streams, saturating the already insufficient net of sanitation facilities polluting water and soil. An effective treatment has been established with low cost in Europe and the United States, through constructed systems on wetlands Constructed Wetland Systems - CWSs, gradually used in other countries in the last three decades. Lately, we observe a continuous growth in Brazilian poultry business, and poultry industry showed greatest dynamism in the country, following the global market. Pondering this information and the efficiency of such treatment, this work aimed to study prototypes, in a laboratory scale, simulating ascending and descending types of CWSs, vegetated with aquatic macrophytes Eichhornia crassipes and the uses of aggregates and soil, to treat industrial wastewater from slaughterhouses and aviary. We conducted the initial characterization of the effluent to have an idea of its constituents and to scale the system and the continuous flow. Furthermore, we characterized the soil to be used in this system. The collects are periodically made in the refrigeration industry FRICOCK FRIGORIFICAÇÃO AVICULTURA INDÚSTRIA E COMÉRCIO LTDA. for local treatment simulation. The effluent that was treated with 12 prototypes of CWSs are analyzed with some frequency. The results of these reviews were compared to the effluent coming from the industry... (Complete abstract click electronic access below)
Resumo:
Water is an essential element for life. The use of this element, to support the community, defines it as water resource. This feature is being misused and degraded by the dumping of highly contaminated effluents. The impoverishment of its quality poses a risk to human consumption. The necessity to manage this resource, treating the wastewater properly, requires the constant improvement of treatment systems. Another need is to adjust the cost of systems to the demands of communities with less financial clout. This study aimed to adapt and understand the systems of wetlands, improving its efficiency, in an attempt to collaborate with the enrichment of this technology. The practical evidence, with lab-scale prototypes, assembled in ETE Piracicamirim with urban sewage effluent contributed to highlight the problems and operating system design. The bibliographic review showed that several studies had effectiveness for treatment. But it was evident the need for better understanding of dimensioning definitions that better attempted to the answers into the project. Moreover, standardization of system conditions for the specific wastewater treatment is an interesting field, identified, for future studies yet contribute to environmental engineering and sanitation
Resumo:
A grande quantidade de resíduos sólidos gerados nas cidades é um desafio para o saneamento ambiental no Brasil. A fim de se reduzir os impactos gerados ao meio ambiente e à saúde pública, é necessário que haja um gerenciamento adequado, desde a coleta até a disposição final, desses resíduos sólidos urbanos. Os aterros sanitários permitem um maior controle ambiental, desde que sejam bem projetados e operados. A decomposição da matéria orgânica presente nesses resíduos, somada às águas das chuvas gera o lixiviado, líquido com alto potencial poluidor. Várias formas de tratamento são propostas com a finalidade de tornar o lixiviado menos poluente ao meio ambiente. Wetlands construídos tem se mostrado uma alternativa eficiente para a remoção de poluentes em lixiviados, além dos baixos custos operacionais e de implantação. O presente estudo investigou o uso de wetlands subsuperficiais em escala-piloto para o tratamento de um lixiviado prétratado. Os wetlands foram monitorados com a finalidade de se obter remoções de matéria orgânica e nitrogênio amoniacal. As maiores reduções percentuais de concentração de nitrogênio amoniacal, DQO e COD foram, 91%, 42% e 35%, respectivamente. As maiores reduções percentuais em carga de nitrogênio amoniacal e DQO foram, 67% e 50%, respectivamente. Os resultados dos ensaios de toxicidade realizados com os organismos Vibrio fischeri e Danio rerio revelaram que, a toxicidade do lixiviado foi reduzida ao ser tratado pelo wetland.
Resumo:
Wetlands systems are considered nowadays as a treatment method that uses simple, easy operation and low cost technology, which has been used in various parts of the world and also in Brazil. Used alone or as a complement to other types of treatment systems, once it effectively removes nutrients, pathogens and other pollutants in the water. Due to the high complexity found in wetlands, making it difficult to predict the response of the system to treat wastewater, one should consider as ideal to base the sizing of the wetland system over the necessary removal of this parameter instead of scaling it from empiricism. The study was conducted to determine the coefficient of bacterial decrease in the Wetland unit located at Ponta Negra Station Sewage Treatment, located in Natal, the coastal region of Rio Grande do Norte. The most representative model to determine the bacterial decrease in this system was the one from Chick for hydraulic piston system. Kb of 0.37 d-1 were found for the flow rate of 15m³/d, while for the system operating at maximum design flow, 30m³/d, the Kb of 0.98 d-1 was found
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
O atenolol é um fármaco β-bloqueador normalmente encontrado em águas residuais devido à incapacidade que os processos convencionais de tratamento destas águas têm em removê-lo. Neste trabalho foram utilizados microcosmos de leitos construídos de macrófitas de fluxo sub-superficial utilizando uma matriz de argila expandida (LECA) e plantados com Phragmites australis para avaliar a sua capacidade em remover atenolol das águas residuais. Para a detecção e quantificação do atenolol em soluções aquosas (águas e efluentes) desenvolveu-se e optimizou-se uma metodologia analítica usando separação cromatográfica por HPLC e detecção espectrofotométrica por diode array (HPLC-DAD) ou por ultravioleta visível (HPLC-UV-Vis). Desenvolveu-se também um procedimento de limpeza e concentração de amostra por extracção em fase sólida (SPE), o qual foi utilizado sempre que as concentrações do analito se encontraram abaixo dos limites de quantificação do equipamento. A utilização desta metodologia de HPLC, combinada com uma eficaz pré-concentração por SPE, resultou num método analítico com um limite de quantificação muito reduzido (9 ngmL-1) e elevada reprodutibilidade (RSD<4%). A eficiência de remoção de atenolol pelos sistemas de macrófitas estudados foi de 93% após um tempo de retenção de 4 dias. Foram testados leitos só com LECA e com LECA e plantas para remoção do atenolol. Nos leitos só com LECA, a cinética de remoção foi caracterizada por um rápido passo inicial (uma remoção de aproximadamente 75% após apenas 24 h), o qual é frequentemente atribuído à adsorção na matriz de LECA. A remoção de atenolol nos leitos de LECA continuou a aumentar de forma constante até ao final do ensaio (8 dias), sendo, contudo cerca de 5-10% mais baixo do que o valor observado nos leitos das plantas após os 4 primeiros dias. Para o tempo de retenção de 4 dias a maioria do atenolol é removido pela matriz de LECA, porém um acréscimo de cerca de 12-14% relativamente à eficiência de remoção global pode ser atribuído às plantas (Phragmites australis), o que está de acordo com trabalhos anteriormente publicados. Apesar de ser necessário realizar mais testes utilizando sistemas em larga escala, de modo a conseguir avaliar totalmente o comportamento do atenolol num sistema de leitos construídos de macrófitas, o presente estudo apresenta a possibilidade de aplicar este tipo de sistemas, relativamente baratos, no tratamento de águas residuais contaminadas com atenolol. ABSTRACT: Atenolol is a β-blocker drug commonly found in wastewaters due to the inability of the conventional wastewater treatment processes to remove it. ln this study, subsurface flow constructed wetland microscosm systems have been established with a matrix of light expanded clay aggregates (LECA) and planted with Phragmites australis in order to evaluate their ability to remove atenolol from wastewater. For the detection and quantification of atenolol in aqueous solutions (water and wastewater), an adequate analytical methodology was developed and optimized using chromatographic separation by HPLC and diode array (DAD) or UV-Vis spectrophotometric detection. A sample clean-up and preconcentration procedure by solid phase extraction (SPE) was also developed for use whenever the concentration levels of the analyte were below the instrument's limit of quantification. Combined with an efficient SPE concentration step, the use of HPLC yielded an analytical method for atenolol quantification with very low LOQ (9 ngmL-1) and high reproducibility (RSD< 4%). Overall atenolol removal efficiency of 93% was achieved after a retention time of only 4 days with the microcosm systems planted with Phragmites australis. The removal kinetics was characterized by an initial fast step (removal of about 75% after just 24h) which is mainly attributable to adsorption on the LECA matrix. Atenolol removal in LECA beds continues to increase in a steady pace up to the end of the assay (8 days) being nevertheless about 5-l 0% lower than those observed in the planted beds after the first 4 days. For the retention time of 4 days most of the atenolol is removed by the LECA matrix but an additional 12-14% to the overall removal efficiency can be attributed to the Phragmites plants, which comes in agreement with other published reports. Despite the fact that further tests using larger scale systems are required to fully evaluate the atenolol behavior in a constructed wetland system, this study points out to the possible application of these low-cost wastewater systems to treat atenolol contaminated wastewater.
Resumo:
Performance of a constructed wetland is commonly reported as variable due to the site specific nature of influential factors. This paper discusses outcomes from an in-depth study which characterised treatment performance of a wetland based on the variation in runoff regime. The study included a comprehensive field monitoring of a well established constructed wetland in Gold Coast, Australia. Samples collected at the inlet and outlet was tested for Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP). Pollutant concentrations in the outflow were found to be consistent irrespective of the variation in inflow water quality. The analysis revealed two different treatment characteristics for events with different rainfall depths. TSS and TN load reduction is strongly influenced by hydraulic retention time where performance is higher for rainfall events below the design event. For small events, treatment performance is higher at the beginning of the event and gradually decreased during the course of the event. For large events, the treatment performance is comparatively poor at the beginning and improved during the course of the event. The analysis also confirmed the variable treatment trends for different pollutant types.