977 resultados para Welded tubular specimens
Resumo:
Standard Test Methods (e.g. ASTM, DIN) for materials characterization in general, and for fatigue in particular, do not contemplate specimens with complex geometries, as well as the combination of axial and in-plane bending loads in their methodologies. The present study refers to some patents and the new configuration or configurations of specimens (non-standardized by the status quo of test methods) and a device developed to induce axial and bending combined forces resultants from axial loads applied by any one test equipment (dynamic or monotonic) which possesses such limitation, towards obtaining more realistic results on the fatigue behavior, or even basic mechanical properties, from geometrically complex structures. Motivated by a specific and geometrically complex aeronautic structure (motor-cradle), non-standardized welded tubular specimens made from AISI 4130 steel were fatigue-tested at room temperature, by using a constant amplitude sinusoidal load of 20 Hz frequency, load ratio R = 0.1 with and without the above referred auxiliary fatigue apparatus. The results showed the fatigue apparatus was efficient for introducing higher stress concentration factor at the welded specimen joints, consequently reducing the fatigue strength when compared to other conditions. From the obtained results it is possible to infer that with small modifications the proposed apparatus will be capable to test a great variety of specimen configurations such as: squared tubes and plates with welded or melted junctions, as well as other materials such as aluminum, titanium, composites, polymeric, plastics, etc. © 2009 Bentham Science Publishers Ltd.
Resumo:
In this work tubular fiber reinforced specimens are tested for fatigue life. The specimens are biaxially loaded with tension and shear stresses, with a load angle β of 30° and 60° and a load ratio of R=0,1. There are many factors that affect fatigue life of a fiber reinforced material and the main goal of this work is to study the effects of load ratio R by obtaining S-N curves and compare them to the previous works (1). All the other parameters, such as specimen production, fatigue loading frequency and temperature, will be the same as for the previous tests. For every specimen, stiffness, temperature of the specimen during testing, crack counting and final fracture mode are obtained. Prior to testing, a study if the literature regarding the load ratio effects on composites fatigue life and with that review estimate the initial stresses to be applied in testing. In previous works (1) similar specimens have only been tested for a load ratio of R=-1 and therefore the behaviour of this tubular specimens for a different load ratio is unknown. All the data acquired will be analysed and compared to the previous works, emphasizing the differences found and discussing the possible explanations for those differences. The crack counting software, developed at the institute, has shown useful before, however different adjustments to the software parameters lead to different cracks numbers for the same picture, and therefore a better methodology will be discussed to improve the crack counting results. After the specimen’s failure, all the data will be collected and stored and fibre volume content for every specimen is also determinate. The number of tests required to make the S-N curves are obtained according to the existent standards. Additionally are also identified some improvements to the testing machine setup and to the procedures for future testing.
Resumo:
This work examines the effect of weld strength mismatch on fracture toughness measurements defined by J and CTOD fracture parameters using single edge notch bend (SE(B)) specimens. A central objective of the present study is to enlarge on previous developments of J and CTOD estimation procedures for welded bend specimens based upon plastic eta factors (eta) and plastic rotational factors (r (p) ). Very detailed non-linear finite element analyses for plane-strain models of standard SE(B) fracture specimens with a notch located at the center of square groove welds and in the heat affected zone provide the evolution of load with increased crack mouth opening displacement required for the estimation procedure. One key result emerging from the analyses is that levels of weld strength mismatch within the range +/- 20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens with relatively large weld grooves. The present study provides additional understanding on the effect of weld strength mismatch on J and CTOD toughness measurements while, at the same time, adding a fairly extensive body of results to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.
Resumo:
Históricamente la fractura ha sido considerada siempre como un efecto indeseado entre los materiales, dado que su aparición supone un cese del material en servicio, puesto que un material fracturado carece de importancia desde el punto de vista comercial. Consecuentemente, la Mecánica de Fractura ha experimentado un desarrollo importante en las últimas décadas como no lo hizo en toda la historia de los materiales. El desarrollo de nuevos campos a nivel científico y técnico han estado de la mano con el desarrollo de nuevos materiales que satisfagan las necesidades particulares de cada sector o aplicación. Este requerimiento se ve acentuado cuando se incorpora el aspecto económico, dado que, así como se necesitan materiales con mayor resistencia a la fractura, corrosión etc, también se necesita que su precio en el mercado sea accesible y que permita una aplicación rentable. En los últimos 70 años, desde los requerimientos de nuevos materiales resistentes a la fractura con los buques Liberty hasta el boom petrolero, pasando por las aplicaciones aeroespaciales se han desarrollado diversas teorías que explican el comportamiento de los materiales, en cuando a la tenacidad a la fractura en distintas temperaturas, composiciones químicas, materiales compuestos etc. Uno de los sectores que más ha demandado un desarrollo, por su amplitud en cuanto a requerimientos y consumo global, así como su impacto en la economía mundial, es el sector de gas, petróleo y petroquímica. Muchos de los proyectos que se intentaron desarrollar hasta hace menos de 25 años eran inviables por su elevado coste de ejecución y su bajo retorno de inversión debido a la caída de los precios del petróleo. Con una demanda creciente a nivel mundial y unos precios que apuntan hacia la estabilización o alza moderada, nuevos sistemas de trasporte por tuberías han sido necesarios desarrollar, desde el punto de vista de ingeniería, con el menos coste posible y de un modo seguro. Muchas de estas aplicaciones se vieron incrementadas cuando nuevos requerimientos en cuanto a resistencia a la corrosión fueron necesarios: demanda de materiales que no se corroan, con prestaciones seguras a nivel mecánico y un bajo coste. Esta nueva etapa se conoce como Aleaciones Resistentes a la Corrosión (CRA´s por sus siglas en inglés) en las cuales uno de los factores de diseño seguro recaían indiscutiblemente en la mecánica de fractura. Por estas razones era necesario entender como influía en la resistencia a la fractura las aportaciones que podrían hacerse sobre una superficie metálica. Al realizar el presente estudio se comenzó analizando la influencia que tenían modificaciones en el rango iónico sobre aceros al carbono. Estudios previos sobre láminas de acero ferrítico usadas en reactores de fisión nuclear demostraron que aportes de iones, en este particular el Helio, influían en el comportamiento de la tenacidad a la fractura en función de la temperatura. De este modo, un primer análisis fue hecho sobre la influencia de iones de nitrógeno aportados sobre superficies de acero al carbono y como modificaban su tenacidad a la fractura. Este primer análisis sirvió para comprobar el impacto que tenían pequeñas dosis de iones de nitrógeno en la tenacidad a la fractura. Otro desarrollo con una mayor aplicación industrial fue hecho sobre superficies de acero al carbono con aporte por soldadura de los materiales más usados para evitar la corrosión. El análisis se centró fundamentalmente en la influencia que tenían distintos materiales aportados como el MONEL 400, DUPLEX 928, INCONEL 625 y STAINLESS-STEEL 316 en referencia a características de diseño como la tensión elástica y la tensión a la rotura. Este análisis permitió conocer el impacto de los materiales aportados en los ensayos de tracción en probetas de acero al carbono. Una explicación acerca del comportamiento fue soportada por el análisis macrofractográfico de los perfiles fracturados y las macro deformaciones en la superficie de las probetas. Un posterior desarrollo teórico permitió modelar matemáticamente la fractura de las probetas aportadas por soldadura en la región elástica por medio de la Ley de Hooke, así como la teoría de Plasticidad de Hill para la región de deformación plástica. ABSTRACT Fracture mechanics has been extensively studied in the last 70 years by the constant requirements of new materials with low costs. These requirements have allowed surface modified welded materials in which it is necessary to know the influence of design fundamentals with the material surface welded. Several specimens have been studied for ductile fracture in longitudinal tensile tests for carbon steel surface-modified by weld overlay MONEL 400, DUPLEX 928, INCONEL 625 and STAINLESS-STEEL 316. Similarly of macro photographic analyzes to level the fractured surfaces that explain the behavior curves obtained in Tensile – displacement charts. The contribution of weld overlay material shows a significant impact on the yield and tensile stress of the specimens which was modeled according to Hooke's law for elastic area and Hill´s theory of plasticity to the plastic one.
Resumo:
In the bulge test, a sheet metal specimen is clamped over a circular hole in a die and formed into a bulge by the hydraulic pressure on one side of the specirnen. As the unsupported part of the specimen is deformed in this way, its area is increased, in other words, the material is generally stretched and its thickness generally decreased. The stresses causing this stretching action are the membrane stresses in the shell generated by the hydraulic pressure, in the same way as the rubber in a toy balloon is stretched by the membrane stresses caused by the air inside it. The bulge test is a widely used sheet metal test, to determine the "formability" of sheet materials. Research on this forming process (2)-(15)* has hitherto been almost exclusively confined to predicting the behaviour of the bulged specimen through the constitutive equations (stresses and strains in relation to displacements and shapes) and empirical work hardening characteristics of the material as determined in the tension test. In the present study the approach is reversed; the stresses and strains in the specimen are measured and determined from the geometry of the deformed shell. Thus, the bulge test can be used for determining the stress-strain relationship in the material under actual conditions in sheet metal forming processes. When sheet materials are formed by fluid pressure, the work-piece assumes an approximately spherical shape, The exact nature and magnitude of the deviation from the perfect sphere can be defined and measured by an index called prolateness. The distribution of prolateness throughout the workpiece at any particular stage of the forming process is of fundamental significance, because it determines the variation of the stress ratio on which the mode of deformation depends. It is found. that, before the process becomes unstable in sheet metal, the workpiece is exactly spherical only at the pole and at an annular ring. Between the pole and this annular ring the workpiece is more pointed than a sphere, and outside this ring, it is flatter than a sphere. In the forming of sheet materials, the stresses and hence the incremental strains, are closely related to the curvatures of the workpiece. This relationship between geometry and state of stress can be formulated quantitatively through prolateness. The determination of the magnitudes of prolateness, however, requires special techniques. The success of the experimental work is due to the technique of measuring the profile inclination of the meridional section very accurately. A travelling microscope, workshop protractor and surface plate are used for measurements of circumferential and meridional tangential strains. The curvatures can be calculated from geometry. If, however, the shape of the workpiece is expressed in terms of the current radial (r) and axial ( L) coordinates, it is very difficult to calculate the curvatures within an adequate degree of accuracy, owing to the double differentiation involved. In this project, a first differentiation is, in effect, by-passed by measuring the profile inclination directly and the second differentiation is performed in a round-about way, as explained in later chapters. The variations of the stresses in the workpiece thus observed have not, to the knowledge of the author, been reported experimentally. The static strength of shells to withstand fluid pressure and their buckling strength under concentrated loads, both depend on the distribution of the thickness. Thickness distribution can be controlled to a limited extent by changing the work hardening characteristics of the work material and by imposing constraints. A technique is provided in this thesis for determining accurately the stress distribution, on which the strains associated with thinning depend. Whether a problem of controlled thickness distribution is tackled by theory, or by experiments, or by both combined, the analysis in this thesis supplies the theoretical framework and some useful experimental techniques for the research applied to particular problems. The improvement of formability by allowing draw-in can also be analysed with the same theoretical and experimental techniques. Results on stress-strain relationships are usually represented by single stress-strain curves plotted either between one stress and one strain (as in the tension or compression tests) or between the effective stress and effective strain, as in tests on tubular specimens under combined tension, torsion and internal pressure. In this study, the triaxial stresses and strains are plotted simultaneously in triangular coordinates. Thus, both stress and strain are represented by vectors and the relationship between them by the relationship between two vector functions. From the results so obtained, conclusions are drawn on both the behaviour and the properties of the material in the bulge test. The stress ratios are generally equal to the strain-rate ratios (stress vectors collinear with incremental strain vectors) and the work-hardening characteristics, which apply only to the particular strain paths are deduced. Plastic instability of the material is generally considered to have been reached when the oil pressure has attained its maximum value so that further deformation occurs under a constant or lower pressure. It is found that the instability regime of deformation has already occurred long before the maximum pressure is attained. Thus, a new concept of instability is proposed, and for this criterion, instability can occur for any type of pressure growth curves.
Resumo:
Kolmen eri hitsausliitoksen väsymisikä arvio on analysoitu monimuuttuja regressio analyysin avulla. Regression perustana on laaja S-N tietokanta joka on kerätty kirjallisuudesta. Tarkastellut liitokset ovat tasalevy liitos, krusiformi liitos ja pitkittäisripa levyssä. Muuttujina ovat jännitysvaihtelu, kuormitetun levyn paksuus ja kuormitus tapa. Paksuus effekti on käsitelty uudelleen kaikkia kolmea liitosta ajatellen. Uudelleen käsittelyn avulla on varmistettu paksuus effektin olemassa olo ennen monimuuttuja regressioon siirtymistä. Lineaariset väsymisikä yhtalöt on ajettu kolmelle hitsausliitokselle ottaen huomioon kuormitetun levyn paksuus sekä kuormitus tapa. Väsymisikä yhtalöitä on verrattu ja keskusteltu testitulosten valossa, jotka on kerätty kirjallisuudesta. Neljä tutkimustaon tehty kerättyjen väsymistestien joukosta ja erilaisia väsymisikä arvio metodeja on käytetty väsymisiän arviointiin. Tuloksia on tarkasteltu ja niistä keskusteltu oikeiden testien valossa. Tutkimuksissa on katsottu 2mm ja 6mm symmetristäpitkittäisripaa levyssä, 12.7mm epäsymmetristä pitkittäisripaa, 38mm symmetristä pitkittäisripaa vääntökuormituksessa ja 25mm/38mm kuorman kantavaa krusiformi liitosta vääntökuormituksessa. Mallinnus on tehty niin lähelle testi liitosta kuin mahdollista. Väsymisikä arviointi metodit sisältävät hot-spot metodin jossa hot-spot jännitys on laskettu kahta lineaarista ja epälineaarista ekstrapolointiakäyttäen sekä paksuuden läpi integrointia käyttäen. Lovijännitys ja murtumismekaniikka metodeja on käytetty krusiformi liitosta laskiessa.
Resumo:
It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.
Resumo:
The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
In this study, finite element analyses and experimental tests are carried out in order to investigate the effect of loading type and symmetry on the fatigue strength of three different non-load carrying welded joints. The current codes and recommendations do not give explicit instructions how to consider degree of bending in loading and the effect of symmetry in the fatigue assessment of welded joints. The fatigue assessment is done by using effective notch stress method and linear elastic fracture mechanics. Transverse attachment and cover plate joints are analyzed by using 2D plane strain element models in FEMAP/NxNastran and Franc2D software and longitudinal gusset case is analyzed by using solid element models in Abaqus and Abaqus/XFEM software. By means of the evaluated effective notch stress range and stress intensity factor range, the nominal fatigue strength is assessed. Experimental tests consist of the fatigue tests of transverse attachment joints with total amount of 12 specimens. In the tests, the effect of both loading type and symmetry on the fatigue strength is studied. Finite element analyses showed that the fatigue strength of asymmetric joint is higher in tensile loading and the fatigue strength of symmetric joint is higher in bending loading in terms of nominal and hot spot stress methods. Linear elastic fracture mechanics indicated that bending reduces stress intensity factors when the crack size is relatively large since the normal stress decreases at the crack tip due to the stress gradient. Under tensile loading, experimental tests corresponded with finite element analyzes. Still, the fatigue tested joints subjected to bending showed the bending increased the fatigue strength of non-load carrying welded joints and the fatigue test results did not fully agree with the fatigue assessment. According to the results, it can be concluded that in tensile loading, the symmetry of joint distinctly affects on the fatigue strength. The fatigue life assessment of bending loaded joints is challenging since it depends on whether the crack initiation or propagation is predominant.
Resumo:
Friction welding is a solid state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanical induced rubbing motion and applied load. In rotary friction welding technique heat is generated by the conversion of mechanical energy into thermal energy at the interface of the work pieces during rotation under pressure. Traditionally friction welding is carried out on a dedicated machine because of its adaptability to mass production. In the present work, steps were made to modify a conventional lathe to rotary friction welding set up to obtain friction welding with different interface surface geometries at two different speeds and to carry out tensile characteristic studies. The surface geometries welded include flat-flat, flat-tapered, tapered-tapered, concave-convex and convex-convex. A comparison of maximum load, breaking load and percentage elongation of different welded geometries has been realized through this project. The maximum load and breaking load were found to be highest for weld formed between rotating flat and stationary tapered at 500RPM and the values were 19.219kN and 14.28 kN respectively. The percentage elongation was found to be highest for weld formed between rotating flat and stationary flat at 500RPM and the value was 21.4%. Hence from the studies it is cleared that process parameter like “interfacing surface geometries” of weld specimens have strong influence on tensile characteristics of friction welded joints
Resumo:
Welding of high strength and low weight materials like Aluminium Alloys without any defects by conventional welding techniques is a major challenge in industries. Hence research on solid state welding techniques like Friction stir welding and Friction welding techniques have got much importance in joining of Aluminium alloys. However most of the industries are not changing conventional techniques as skilled workers are available on that area. Most common conventional welding techniques used for joining of Aluminium alloys are Gas welding and Arc welding. Friction welding is a solid-state welding process that generates heat through mechanical friction between a moving and a stationary component with the addition of a lateral force called “upset” to plast ically displace and fuse the materials. In this work, experimental study on tensile and micro structural characteristics of welded joints formed from conventional welding techniques and Rotary friction welding(suitable for weld specimens with circular cross section) has been carried out and the same were compared. The process parameters for arc welding used was 50-70 Amp reverse polarity DC and electrodes of 2.3mm diameter. In Gas welding, the parameters were oxy acetylene neural flame at 3200°C and 3mm electrodes . In the case of friction welding an axial pressure loading of 3Mpa with 5 MPa as upsetting pressure and 500 rpm were used to obtain good welded joints. Tensile characteristic studies of Arc welded joints and Gas welded joints showed 48% and 60 % variations respectively from the maximum load bearing characteristics of parent metal. In the case of friction welded joint, the variation was found to 46%. Micro structural evaluation of conventionally welded joints exhibited clear distinct zones of various weld regions. In the case of friction welded joint micro structural photographs showed comparable features both in parent metal and welded region. Thus the tensile characteristic study and microstructure evaluations proved that friction welded joints are good in both aspects compared to conventionally welded joints.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG