906 resultados para Welded joint
Resumo:
Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 oC or 623 K) were tested in this work at room temperature, 50 oC (or 323 K) and 75 oC (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 oC (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 oC (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.
Resumo:
Welding of high strength and low weight materials like Aluminium Alloys without any defects by conventional welding techniques is a major challenge in industries. Hence research on solid state welding techniques like Friction stir welding and Friction welding techniques have got much importance in joining of Aluminium alloys. However most of the industries are not changing conventional techniques as skilled workers are available on that area. Most common conventional welding techniques used for joining of Aluminium alloys are Gas welding and Arc welding. Friction welding is a solid-state welding process that generates heat through mechanical friction between a moving and a stationary component with the addition of a lateral force called “upset” to plast ically displace and fuse the materials. In this work, experimental study on tensile and micro structural characteristics of welded joints formed from conventional welding techniques and Rotary friction welding(suitable for weld specimens with circular cross section) has been carried out and the same were compared. The process parameters for arc welding used was 50-70 Amp reverse polarity DC and electrodes of 2.3mm diameter. In Gas welding, the parameters were oxy acetylene neural flame at 3200°C and 3mm electrodes . In the case of friction welding an axial pressure loading of 3Mpa with 5 MPa as upsetting pressure and 500 rpm were used to obtain good welded joints. Tensile characteristic studies of Arc welded joints and Gas welded joints showed 48% and 60 % variations respectively from the maximum load bearing characteristics of parent metal. In the case of friction welded joint, the variation was found to 46%. Micro structural evaluation of conventionally welded joints exhibited clear distinct zones of various weld regions. In the case of friction welded joint micro structural photographs showed comparable features both in parent metal and welded region. Thus the tensile characteristic study and microstructure evaluations proved that friction welded joints are good in both aspects compared to conventionally welded joints.
Resumo:
Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. In this paper, a finite element model for the wheel flat study is developed by use of the FEA software package ANSYS. The effect of the wheel flat to impact force on sleepers is investigated. It has found that the wheel flat significantly increases impact forces and maximum Von Mises stress, and also delays the peak position of dynamic variation for impact forces on both rail and sleeper.
Resumo:
Wheel-rail interaction is one of the most important research topics in railway engineering. It includes track vibration, track impact response and safety of the track. Track structure failures caused by impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. The wheel-rail impact forces occur because of imperfections on the wheels or rails such as wheel flats, irregular wheel profile, rail corrugation and differences in the height of rails connected at a welded joint. The vehicle speed and static wheel load are important factors of the track design, because they are related to the impact forces under wheel-rail defects. In this paper, a 3-Dimensional finite element model for the study of wheel flat impact is developed by use of the FEA software package ANSYS. The effects of the wheel flat to impact force on sleepers with various speeds and static wheel loads under a critical wheel flat size are investigated. It has found that both wheel-rail impact force and impact force on sleeper induced by wheel flat are varying nonlinearly by increasing the vehicle speed; both impact forces are nonlinearly and monotonically increasing by increasing the static wheel load. The relationships between both of impact forces induced by wheel flat and vehicles speed or static load are important to the track engineers to improve the design and maintenance methods in railway industry.
Resumo:
Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.
Resumo:
A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Experimental trials of autogenous deep penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 5.0 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser output power, welding velocity and defocusing distance on the morphology, welding depth and width as well as quality of the welded seam were investigated. Results show that full keyhole welding is not formed on both K4.18 and 42CrMo side, simultaneously, due to the relatively low output power. Partial fusion is observed on the welded seam near 42CrMo side because of the large disparity of thermal-physical and high-temperature mechanical properties of these two materials. Tile rnicrohardness of the laser-welded joint was also examined and analyzed. It is suggested that applying negative defocusing in the range of Raylei length can increase the welding depth and improve tile coupling efficiency of the laser materials interaction. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
O aço inoxidável hiperduplex, SAF 2707 HD, foi desenvolvido com o intuito de se obter novas ligas com maior resistência à corrosão do que a disponível nos aços inoxidáveis duplex / superduplex. Além da melhorada resistência à corrosão, este tb oferece propriedades mecânicas superiores. Os aços hiperduplex são aços de última geração que possuem elevados teores de elementos de liga, principalmente cromo, molibdênio e nitrogênio. Este tipo de aço caracteriza-se por apresentar estrutura bifásica, constituída de proporções praticamente iguais de ferrita e austenita devido à distribuição controlada dos elementos alfagênicos e gamagênicos. O interesse por esses aços cresce gradativamente com a necessidade de novos materiais para diversas aplicações na indústria petrolífera. Porém, quando expostos e mantidos a temperaturas elevadas, na faixa entre 600C e 1000C, algumas fases intermetálicas podem se formar, em que a fase sigma () é a mais proeminente. Possui uma estrutura cristalina tetragonal complexa rica em Cr e Mo, tendo efeito deletério no material afetando tanto a resistência à corrosão, quanto as propriedades mecânicas. Para este fim, faz-se necessário estudos da junta soldada para delinear as limitações desses aços e aperfeiçoar a aplicação. Essa pesquisa teve como objetivo caracterizar a junta soldada por TIG autógeno manual com arco pulsado e não pulsado do aço inoxidável hiperduplex SAF 2707 HD. As técnicas empregadas foram a metalografia por ataque eletrolítico (reagente NaOH) e color etching (reagente Behara), medidas de microdureza e quantificação microestrutural por Processamento Digital de Imagem. Os aspectos microestruturais foram observados por microscopia óptica (MO) e microscopia eletrônica de varredura (MEV), estes passaram por etapas de processamento digital de imagens (PDI) para quantificar a fração volumétrica da fase austenita. Realizou-se análise química semi-quatitativa por EDS. Os resultados foram analisados estatisticamente através do teste de hipóteses com distribuição t de Student. Pela técnica color etching observou-se que a fase austenita foi gerada com distribuição mais homogênea para o arco pulsado, que o não pulsado. O ataque eletrolítico não revelou uma terceira fase (fase ) na junta soldada, a análise química por EDS não identificou uma variação significativa nos elementos presentes ao longo da zona de transição do metal de base para a zona de fusão. Através do PDI foram obtidos os valores médios da fração volumétrica de austenita de 36,38% (desvio padrão 6,40%) e 32,41% (desvio padrão 6,67%) para os dois métodos, pulsado e não pulsado, respectivamente. Foram obtidos os valores de microdureza para o metal de base 355,10 HV (desvio padrão 28,60) e para a zona de fusão 343,60 HV (desvio padrão 20,51) da amostra soldada pelo modo pulsado, para o modo não pulsado foram apresentaram os valores médios de 370,30 HV (desvio padrão 34,51) para o metal de base e de 345,20 HV (desvio padrão 41,33) para a zona de fusão. A análise estatística indicou que não houve variação significativa da fração volumétrica da fase austenita no cordão de solda para as duas condições testadas e não houve variação da microdureza entre a zona de fusão e o metal de solda das amostras submetidas aos dois processos.
Resumo:
O aço inoxidável hiperduplex possui alta resistência a corrosão por pite em ambientes contendo cloretos, quando comparado a outros aços inoxidáveis comercialmente conhecidos. Possui boas propriedades mecânicas, com limite de escoamento superior a 700MPa e limite de resistência a tração em torno de 1000MPa. Essas propriedades o tornam muito atrativos para aplicações em ambientes contendo cloretos, e por isso tem tido destaque na indústria de óleo e gás, refinarias, plataformas offshore, etc. A liga hiperduplex é composta por uma estrutura bifásica, contendo proporções aproximadamente iguais de ferrita e austenita. Esse material possui boa soldabilidade, mas por ser termodinamicamente metaestável, em altas temperaturas pode ocorrer a precipitação de fases intermetálicas não desejáveis, o que resulta em perda de propriedades mecânicas e diminuição da resistência a corrosão. A fase sigma tem sido fortemente estudada, pois é comum sua precipitação nos aços inoxidáveis da família duplex durante o procedimento de soldagem se este não for muito bem controlado. A fase sigma precipita preferencialmente na fase ferrítica, devido a maior concentração de Cr e Mo, que são os elementos formadores da fase. A resistência a corrosão é reduzida e as propriedades mecânicas do material são alteradas o tornando frágil devido a presença da fase sigma. É formada entre 600C e 1000C e possui uma estrutura tetragonal complexa. O objetivo do trabalho foi identificar a possível presença da fase sigma na junta soldada do aço inoxidável hiperduplex SAF 2707 HD (UNS S32707) pelo processo TIG autógeno manual através da difração de raios-x. Nessa pesquisa, foram analisadas uma junta soldada do material pelo processo TIG autógeno manual com arco pulsado. Complementando o estudo foram analisadas seis amostras do aço inoxidável superduplex, sendo que cinco amostras sofreram tratamento térmico para a proposital formação da fase sigma. O refinamento do resultado da difração das amostras foi feito utilizando o método de Rietveld no software Topas Academic versão 4.1. O resultado da amostra soldada de hiperduplex apresentou as fases austenita, ferrita e alguns prováveis óxidos. Os resultados das amostras de superduplex tratadas termicamente apresentaram a fase sigma, conforme esperado na pesquisa, e as fases austenita e ferrita.
Resumo:
基于热粘弹性积分型本构关系,考虑材料性能依赖于温度变化及相变潜热的影响,利用有限元软件ANSYS热-力耦合及载荷步功能模拟结晶型高密度聚乙烯塑料压力管道热板焊接过程。并对焊接接头的应力分布进行有限元分析,得到了环向、轴向及径向瞬态应力分布规律。采用盲孔法和锯切法测量焊后残余应力,实测结果与数值分析基本吻合。
Resumo:
基于热粘弹性积分型本构关系,考虑材料性能依赖于温度变化及相变潜热的影响,利用AN SYS热-力耦合及载荷步功能模拟结晶型高密度聚乙烯(HDPE)塑料压力管道热板焊接过程,并对焊接接头的应力分布进行有限元分析,得到了环向、轴向以及径向瞬态应力分布的基本规律。采用盲孔法和锯切法测量焊后残余应力,实测结果与数值分析基本符合
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A necessidade de utilizar métodos de ligação que melhor satisfaçam as necessidades de projeto tem causado a crescente utilização das juntas adesivas, em detrimento dos métodos tradicionais tais como a soldadura, ligações aparafusadas e rebitadas. A sua utilização em diversas aplicações industriais justifica-se pela redução de peso, redução de concentrações de tensões, isolamento acústico e melhor resistência à corrosão. Contudo, também apresentam desvantagens, como a necessidade de preparação das juntas, a fraca resistência a esforços de arrancamento e a complexidade da previsão da sua resistência. As juntas híbridas são obtidas por combinação de uma técnica tradicional com uma ligação adesiva. As juntas híbridas adesivas-soldadas obtêm-se através da combinação da ligação adesiva com a ligação soldada, sendo a soldadura de resistência por pontos a técnica de soldadura mais usada no fabrico deste tipo de juntas. A sinergia entre ligação adesiva e soldadura por pontos oferece vantagens competitivas em relação às ligações adesivas, tais como superior resistência e rigidez, e maior resistência ao arrancamento e à fadiga. No presente trabalho é apresentado um estudo experimental e numérico de juntas T-peel soldadas, adesivas e híbridas (adesivas-soldadas) solicitadas ao arrancamento. Considerouse o adesivo frágil Araldite® AV138 e os adesivos dúcteis Araldite® 2015 e Sikaforce® 7752 e aderentes de aço (C45E). Foi realizada uma análise dos valores experimentais e efetuada uma comparação destes valores com os resultados obtidos pelo Método de Elementos Finitos (MEF) no software ABAQUS®, que incluiu uma análise de tensões na camada de adesivo e previsão do comportamento das juntas por MDC. Observou-se que, dos três adesivos em estudo, o adesivo Sikaforce® 7752 é o que apresenta o melhor desempenho na ligação de juntas T-peel. A boa concordância entre os resultados experimentais e numéricos permitiu validar a utilização de MDC para previsão da resistência de juntas T-peel adesivas e híbridas. Assim, o presente trabalho representa uma base para posterior aplicação no projeto deste tipo de ligação, com as vantagens decorrentes na redução do tempo de projeto e maior facilidade de otimização.