994 resultados para Weed Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing agricultural crops in wide row spacings has been widely adopted to conserve water, to control pests and diseases, and to minimise problems associated with sowing into stubble. The development of herbicide resistance combined with the advent of precision agriculture has resulted in a further reason for wide row spacings to be adopted: weed control. Increased row spacing enables two different methods of weed control to be implemented with non-selective chemical and physical control methods utilised in the wide inter-row zone, with or without selective chemicals used on the on-row only. However, continual application of herbicides and tillage on the inter-row zone brings risks of herbicide resistance, species shifts and/or changes in species dominance, crop damage, increased costs, yield losses, and more expensive weed management technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project will develop and deliver improved integrated weed management strategies for weeds at risk of glyphosate resistance and species shift in transgenic farming landscapes. It will also facilitate the stewarship of glyphosate and transgenic technology, improving the sustainability of both the herbicide and the genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategic research on developing and improving chemical and non-chemical tactics, weed ecology and herbicide application for problem and emerging weeds of summer fallows in the main cropping regions of the northern region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To undertake a scoping study to identify the major issues in weed management in dryland cropping systems with cotton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of glyphosate tolerant cotton has significantly improved the flexibility and management of a number of problem weeds in cotton systems. However, reliance on glyphosate poses risks to the industry in term of glyphosate resistance and species shift. The aims of this project were to identify these risks, and determine strategies to prevent and mitigate the potential for resistance evolution. Field surveys identified fleabane as the most common weed now in both irrigated and dryland system. Sowthistle has also increased in prevalence, and bladder ketmia and peachvine remained common. The continued reliance on glyphosate has favoured small seeded, and glyphosate tolerant species. Fleabane is both of these, with populations confirmed resistant in grains systems in Queensland and NSW. When species were assessed for their resistance risk, fleabane, liverseed grass, feathertop Rhodes grass, sowthistle and barnyard grass were determined to have high risk ratings. Management practices were also determined to rely heavily on glyphosate and therefore be high risk in summer fallows, and dryland glyphosate tolerant and conventional cotton. Situations were these high risk species are present in high risk cropping phases need particular attention. The confirmation of a glyphosate resistance barnyard grass population in a dryland glyphosate tolerant cotton system means resistance is now a reality for the cotton industry. However, experiments have shown that resistant populations can be managed with other herbicide options currently available. However, the options for fleabane management in cotton are still limited. Although some selective residual herbicides are showing promise, the majority of fleabane control tactics can only be used in other phases of the cotton rotation. An online glyphosate resistance tool has been developed. This tool allows growers to assess their individual glyphosate resistance risks, and how they can adjust their practices to reduce their risks. It also provides researchers with current information on weed species present and practices used across the industry. This tool will be extremely useful in tailoring future research and extension efforts. Simulations from the expanded glyphosate resistance model have shown that glyphosate resistance can be prevented and managed in glyphosate-tolerant cotton farming systems. However, for strategies to be successful, some effort is required. Simulations have shown the importance of controlling survivors of glyphosate applications, using effective glyphosate alternatives in fallows, and combining several effective glyphosate alternatives in crop, and these are the key to the prevention and management of glyphosate resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weed management is the major challenge to the success of dry-seeded rice (DSR). A field study was conducted during the dry seasons of 2013 and 2014at the International Rice Research Institute to evaluate the performance of herbicides combined with mechanical weeding in DSR. The lowest weed density and biomass were found in the treatment oxadiazon followed by (fb) fenoxaprop+ethoxysulfuron fb 2,4-D fb mechanical weeding (MW) at 42 days after sowing (DAS). However, this treatment had similar weed density and biomass to the treatments oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D,oxadiazon fb bispyribac-sodium fb 2,4-D, and oxadiazon fb MW (28 DAS) fb MW (42 DAS). The highest weed density and biomass were recorded in the treatment oxadiazon fb MW (28 DAS) and oxadiazon fb 2,4-D. Higher grain yield (5.3-5.8tha-1) was produced in the plots that received oxadiazon fb fenoxaprop+ethoxysulfuron fb 2,4-D fb MW(42 DAS) and oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D. The results of this study provide sustainable weed management options to farmers growing DSR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lower water availability coupled with labor shortage has resulted in the increasing inability of growers to cultivate puddled transplanted rice (PTR). A field study was conducted in the wet season of 2012 and dry season of 2013 to evaluate the performance of five rice establishment methods and four weed control treatments on weed management, and rice yield. Grass weeds were higher in dry-seeded rice (DSR) as compared to PTR and nonpuddled transplanted rice (NPTR). The highest total weed density (225-256plantsm-2) and total weed biomass (315-501gm-2) were recorded in DSR while the lowest (102-129plantsm-2 and 75-387gm-2) in PTR. Compared with the weedy plots, the treatment pretilachlor followed by fenoxaprop plus ethoxysulfuron plus 2,4-D provided excellent weed control. This treatment, however, had a poor performance in NPTR. In both seasons, herbicide efficacy was better in DSR and wet-seeded rice. PTR and DSR produced the maximum rice grain yields. The weed-free plots and herbicide treatments produced 84-614% and 58-504% higher rice grain yield, respectively, than the weedy plots in 2012, and a similar trend was observed in 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field experiments were conducted in field bean in the north-eastern part of the Republic of Croatia to compare weed control and crop response under different management practices within the critical period of field bean production. The practices consisted in broadcast application of labelled rate of preemergence herbicide (PRE) and postemergence herbicide application: (POST) broadcast, band application over the rows, and band application combined with mechanical cultivation using of different herbicide doses recommended by the manufacturer (2x, 1x, 1/2x, 1/4x, 1/8x). In 1999, weed control with PRE application of pendimethalin was superior to POST bentazone application due to late emergence of weeds and lack of residual herbicide control. In 2000 bentazone combined with cycloxydim controlled weeds in field bean better than PRE herbicide application. Based on the results of this research, single PRE or POST application of herbicide did not control a broad spectrum of weeds and did not provide the commercially acceptable full season control. Reduced rates of herbicide are not advisable tinder high weed pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field experiment was conducted in the low country of Sri Lanka, during the period 1994–1995 to investigate the severity of weed infestation and tea growth in relation to weed management methods in newly established tea (Camellia sinensis[L.] Kuntze). Manual weeding (hand and slash weeding) at various intervals was compared with various herbicides, with or without mulching. Weed control with herbicides was superior to that of hand weeding at 6-week intervals or more. Weed control with oxyfluorfen at 0.29 kg ai ha−1 + paraquat at 0.17 kg ai ha−1 or glyphosate at 0.99 kg ai ha−1 + kaolin at 3.42 kg ha−1 were superior. Plots unweeded for 12 weeks or more produced significantly greater (P < 0.05) weed biomass than plots unweeded for 6 weeks. Although the least weed dry weight (P < 0.05) and the greatest number of weed species were recorded with hand weeding at 2 week intervals, there was no particular benefit on tea growth when compared with hand weeding at 6 and 12 week intervals. Inter row mulching in chemically treated plots was more favorable for tea growth than no mulching, while living weed cover in unmulched slash weeded plots suppressed tea growth. A combination of mulching and herbicides, particularly oxyfluorfen and paraquat, followed by hand weeding at least every 6–8 weeks was considered the most appropriate weed management system for young tea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.

Relevância:

100.00% 100.00%

Publicador: